565 research outputs found

    Pollen dimorphism and dioecy in Vitis aestivalis

    Get PDF
    Problems of low production and sterile pollen in varieties of Vitis vinifera may be tracable to their ancestral relations with dioecious wild grapes.Like V. riparia, the wild summer grape V. aestivalis has dimorphic male and female flowers; but unlike V. riparia it also has dimorphic pollen grains with the pollen from the female flower being significantly smaller.It seems fairly certain that V. aestivalis is truly dioecious

    Response of the Shockley surface state to an external electrical field: A density-functional theory study of Cu(111)

    Get PDF
    The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wavefunctions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well-converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.Comment: 11 pages, 6 figures, 4 tables; accepted for publication by Phys. Rev. B; changes from v1 in response to referee comments, esp. to Sections I and V.B (inc. Table 4), with many added references, but no change in results or conclusion

    Disorder-induced magnetic memory: Experiments and theories

    Full text link
    Beautiful theories of magnetic hysteresis based on random microscopic disorder have been developed over the past ten years. Our goal was to directly compare these theories with precise experiments. We first developed and then applied coherent x-ray speckle metrology to a series of thin multilayer perpendicular magnetic materials. To directly observe the effects of disorder, we deliberately introduced increasing degrees of disorder into our films. We used coherent x-rays to generate highly speckled magnetic scattering patterns. The apparently random arrangement of the speckles is due to the exact configuration of the magnetic domains in the sample. In effect, each speckle pattern acts as a unique fingerprint for the magnetic domain configuration. Small changes in the domain structure change the speckles, and comparison of the different speckle patterns provides a quantitative determination of how much the domain structure has changed. How is the magnetic domain configuration at one point on the major hysteresis loop related to the configurations at the same point on the loop during subsequent cycles? The microscopic return-point memory(RPM) is partial and imperfect in the disordered samples, and completely absent when the disorder was not present. We found the complementary-point memory(CPM) is also partial and imperfect in the disordered samples and completely absent when the disorder was not present. We found that the RPM is always a little larger than the CPM. We also studied the correlations between the domains within a single ascending or descending loop. We developed new theoretical models that do fit our experiments.Comment: 26 pages, 25 figures, Accepted by Physical Review B 01/25/0

    Skyrmion fluctuations at a first-order phase transition boundary

    Get PDF
    Magnetic skyrmions are topologically protected spin textures with promising prospects for applications in data storage. They can form a lattice state due to competing magnetic interactions and are commonly found in a small region of the temperature - magnetic field phase diagram. Recent work has demonstrated that these magnetic quasi-particles fluctuate at the μeV energy scale. Here, we use a coherent x-ray correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order transition boundary where fluctuations are not expected to play a major role. Surprisingly, we find that the relaxation of the intermediate scattering function at this transition differs significantly compared to that deep in the skyrmion lattice phase. The observation of a compressed exponential behavior suggests solid-like dynamics, often associated with jamming. We assign this behavior to disorder and the phase coexistence observed in a narrow field-window near the transition, which can cause fluctuations that lead to glassy behavior

    Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Silver films were deposited at room temperature onto H-passivated Si(111) surfaces. Their electronic properties have been analyzed by angle-resolved photoelectron spectroscopy. Submonolayer films were semiconducting and the onset of metallization was found at a Ag coverage of ∼\sim0.6 monolayers. Two surface states were observed at Γˉ\bar{\Gamma}-point in the metallic films, with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron angular distribution at the Fermi level in these films, a cross-sectional cut of the Fermi surface was obtained. The Fermi vector determined along different symmetry directions and the photoelectron lifetime of states at the Fermi level are quite close to those expected for Ag single crystal. In spite of this concordance, the Fermi surface reflects a sixfold symmetry rather than the threefold symmetry of Ag single crystal. This behavior was attributed to the fact that these Ag films are composed by two domains rotated 60o^o.Comment: 9 pages, 8 figures, submitted to Physical Review

    Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators?

    Get PDF
    As well as nutritional rewards, some plants also reward ectothermic pollinators with warmth. Bumble bees have some control over their temperature, but have been shown to forage at warmer flowers when given a choice, suggesting that there is some advantage to them of foraging at warm flowers (such as reducing the energy required to raise their body to flight temperature before leaving the flower). We describe a model that considers how a heat reward affects the foraging behaviour in a thermogenic central-place forager (such as a bumble bee). We show that although the pollinator should spend a longer time on individual flowers if they are warm, the increase in total visit time is likely to be small. The pollinator's net rate of energy gain will be increased by landing on warmer flowers. Therefore, if a plant provides a heat reward, it could reduce the amount of nectar it produces, whilst still providing its pollinator with the same net rate of gain. We suggest how heat rewards may link with plant life history strategies

    Self-energy of image states on copper surfaces

    Get PDF
    We report extensive calculations of the imaginary part of the electron self-energy in the vicinity of the (100) and (111) surfaces of Cu. The quasiparticle self-energy is computed by going beyond a free-electron description of the metal surface, either within the GW approximation of many-body theory or with inclusion, within the GWΓ\Gamma approximation, of short-range exchange-correlation effects. Calculations of the decay rate of the first three image states on Cu(100) and the first image state on Cu(111) are also reported, and the impact of both band structure and many-body effects on the electron relaxation process is discussed.Comment: 8 pages, 5 figures, to appear in Phys. Rev.

    Differential Photoelectron Holography: A New Approach for Three-Dimensional Atomic Imaging

    Full text link
    We propose differential holography as a method to overcome the long-standing forward-scattering problem in photoelectron holography and related techniques for the three-dimensional imaging of atoms. Atomic images reconstructed from experimental and theoretical Cu 3p holograms from Cu(001) demonstrate that this method suppresses strong forward-scattering effects so as to yield more accurate three-dimensional images of side- and back-scattering atoms.Comment: revtex, 4 pages, 2 figure

    Photoemission Beyond the Sudden Approximation

    Full text link
    The many-body theory of photoemission in solids is reviewed with emphasis on methods based on response theory. The classification of diagrams into loss and no-loss diagrams is discussed and related to Keldysh path-ordering book-keeping. Some new results on energy losses in valence-electron photoemission from free-electron-like metal surfaces are presented. A way to group diagrams is presented in which spectral intensities acquire a Golden-Rule-like form which guarantees positiveness. This way of regrouping should be useful also in other problems involving spectral intensities, such as the problem of improving the one-electron spectral function away from the quasiparticle peak.Comment: 18 pages, 11 figure
    • …
    corecore