1,713 research outputs found

    Breit-Wigner width for two interacting particles in one-dimensional random potential

    Full text link
    For two interacting particles (TIP) in one-dimensional random potential the dependence of the Breit-Wigner width Γ\Gamma, the local density of states and the TIP localization length on system parameters is determined analytically. The theoretical predictions for Γ\Gamma are confirmed by numerical simulations.Comment: 10 pages Latex, 4 figures included. New version with extended numerical results and discussions of earlier result

    Scientific results of the Bryotrop expedition to Zaire and Rwanda : 3., photosynthetic gas exchange of bryophytes from different forest types in eastern Central Africa.

    Get PDF
    During the BRYOTROP-Expedition to Zaire and Rwanda bryophytes were collected from a rainforest habitat at 800 m a.s.l. and from bamboo forest and tree-heath environments between 2200 and 3200 m. The microclimates influencing the mosses are different at the altitudinally separated locations. Conditions are rather constant with 24 °C, 100 % rel. hum. and PAR below 100 μmol photons m-2 sec-1 at the lowland station, rather versatile in the mountains with six times higher daily sums of PAR, temperatures between 10 and 25 °C and relative humidities between 60 and 1oo %. In the bamboo forest epiphytic mosses dry out during the day to less than 70 % of their water content, but regain saturation from the vapor-saturated air during night. Bryophyte photosynthesis and respiration were studied by Warburg manometry with moisture saturated samples. Temperature curves of gas exchange peaked between 22 and 30 °C. Optima of the lowland species were somewhat higher than those from samples collected at the mountain sites. Habitat separation of characteristics of photosynthesis was more pronounced with respect to light responses. Saturation gas exchange rates were reached by all species still below 400 μmol photons m-2 sec-1. But the slopes of the curves in the low-light range were distinctly steeper, and the light compensation points smaller in the lowland than in the highland species (compensation points of the former: 3 - 12 μmol photons m-2 sec-1, of the latter: 8 - 20 μmol photons m-2 sec-1). It is emphasized that bryophytes in the rainforest understory experience extremely high ambient C02 concentrations near the floor. This, their low light requirements for photosynthesis, and the permanently optimal temperature and humidity conditions for maximal carbon gain enable them to live successfully, but with less biomass development in this dark and damp environment. By contrast, bryophytes from the bamboo forest and tree-heath environments can utilize light conditions combined with variable temperatures and humidities similarly as species from extratropical vegetation types

    Crossover of magnetoconductance autocorrelation for a ballistic chaotic quantum dot

    Full text link
    The autocorrelation function C_{\varphi,\eps}(\Delta\varphi,\,\Delta \eps)= \langle \delta g(\varphi,\,\eps)\, \delta g(\varphi+\Delta\varphi,\,\eps+\Delta \eps)\rangle (φ\varphi and \eps are rescaled magnetic flux and energy) for the magnetoconductance of a ballistic chaotic quantum dot is calculated in the framework of the supersymmetric non-linear σ\sigma-model. The Hamiltonian of the quantum dot is modelled by a Gaussian random matrix. The particular form of the symmetry breaking matrix is found to be relevant for the autocorrelation function but not for the average conductance. Our results are valid for the complete crossover from orthogonal to unitary symmetry and their relation with semiclassical theory and an SS-matrix Brownian motion ensemble is discussed.Comment: 7 pages, no figures, accepted for publication in Europhysics Letter

    Doping-dependent magnetization plateaux in p-merized Hubbard chains

    Get PDF
    We study zero-temperature Hubbard chains with periodically modulated hopping at arbitrary filling n and magnetization m. We show that the magnetization curves have plateaux at certain values of m which depend on the periodicity p and the filling. At commensurate filling n a charge gap opens and then magnetization plateaux correspond to fully gapped situations. However, plateaux also arise in the magnetization curves at fixed n between the commensurate values and then the plateau-value of of m depends continuously on n and can thus also become irrational. In particular for the case of dimerized hopping (p=2) and fixed doping we find that a plateau appears at m=1-n. In this case, there is still a gapless mode on the plateau leading to thermodynamic behavior which is different from a completely gapped situation.Comment: 9 pages REVTeX, 3 PostScript figures included using psfig.sty; this is the final version to appear in Phys. Lett. A; substantial changes: Lanczos part removed to gain space for further explanations (refer to original version for details on the numerics

    Emergence of Quantum Ergodicity in Rough Billiards

    Full text link
    By analytical mapping of the eigenvalue problem in rough billiards on to a band random matrix model a new regime of Wigner ergodicity is found. There the eigenstates are extended over the whole energy surface but have a strongly peaked structure. The results of numerical simulations and implications for level statistics are also discussed.Comment: revtex, 4 pages, 4 figure

    Thermodynamic performance testing of the orbiter flash evaporator system

    Get PDF
    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies

    Phase diagram of an exactly solvable t-J ladder model

    Full text link
    We study a system of one-dimensional t-J models coupled to a ladder system. A special choice of the interaction between neighbouring rungs leads to an integrable model with supersymmetry, which is broken by the presence of rung interactions. We analyze the spectrum of low-lying excitations and ground state phase diagram at zero temperature.Comment: LaTeX, 8 pp. incl. 1 figur

    Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain

    Get PDF
    In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, we calculate the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open Hubbard chain. Using the density-matrix renormalization group (DMRG), we re-examine the exponents for the power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the chain. We note that a universal exponent for the asymptotic behavior cannot be extracted from these finite-size systems with open boundary conditions.Comment: 8 pages, 10 figures; v2: final version, references and Fig. 8 adde

    Level Statistics and Localization for Two Interacting Particles in a Random Potential

    Full text link
    We consider two particles with a local interaction UU in a random potential at a scale L1L_1 (the one particle localization length). A simplified description is provided by a Gaussian matrix ensemble with a preferential basis. We define the symmetry breaking parameter μU2\mu \propto U^{-2} associated to the statistical invariance under change of basis. We show that the Wigner-Dyson rigidity of the energy levels is maintained up to an energy EμE_{\mu}. We find that Eμ1/μE_{\mu} \propto 1/\sqrt{\mu} when Γ\Gamma (the inverse lifetime of the states of the preferential basis) is smaller than Δ2\Delta_2 (the level spacing), and Eμ1/μE_{\mu} \propto 1/\mu when Γ>Δ2\Gamma > \Delta_2. This implies that the two-particle localization length L2L_2 first increases as U|U| before eventually behaving as U2U^2.Comment: 4 pages REVTEX, 4 Figures EPS, UUENCODE
    corecore