8,805 research outputs found
On the importance of interstellar helium for the propagation of heavy cosmic rays
The influence of interstellar He on the fragmentation of heavy cosmic rays in the interstellar medium (ISM) has long been a controversial subject. While H-induced cross section data are now avialable over broad mass and energy ranges, little data for He-induced fragmentation exists. With the recent reports of accurate measurements of the secondary/primary ratios in cosmic rays and of H-induced cross sections the problem of including interstellar He in propagation calculations becomes even more critical. As is argued the escape lengths lambda e deduced from the B/C+) and Sc-Cr/Fe ratios cannot be reconciled within the frame of a simple leaky box model assuming the ISM composed of pure H. It is quite remarkable that the discrepancy is especially large in the GeV region where (1) secondary/primary ratios measured by several groups agree fairly well and (2) fragmentation cross sections have been recently measured with good accuracy
An intrinsic characterization of 2+2 warped spacetimes
We give several equivalent conditions that characterize the 2+2 warped
spacetimes: imposing the existence of a Killing-Yano tensor subject to
complementary algebraic restrictions; in terms of the projector (or of the
canonical 2-form ) associated with the 2-planes of the warped product. These
planes are principal planes of the Weyl and/or Ricci tensors and can be
explicitly obtained from them. Therefore, we obtain the necessary and
sufficient (local) conditions for a metric tensor to be a 2+2 warped product.
These conditions exclusively involve explicit concomitants of the Riemann
tensor. We present a similar analysis for the conformally 2+2 product
spacetimes and give an invariant classification of them. The warped products
correspond to two of these invariant classes. The more degenerate class is the
set of product metrics which are also studied from an invariant point of view.Comment: 18 pages; submitted to Class. Quantum Grav
A Cerenkov imaging telescope for high energy gamma rays
A large area gamma ray telescope based on the gas Cerenkov imaging technique is presented. The performances of the instrument for the observation of high energy gamma ray point sources are discussed
The eclipsing bursting X-ray binary EXO 0748-676 revisited by XMM-Newton
The bright eclipsing and bursting low-mass X-ray binary EXO 0748-676 has been
observed at several occasions by XMM-Newton during the initial calibration and
performance verification (CAL/PV) phase. We present here the results obtained
from observations with the EPIC cameras. Apart from several type-I X-ray
bursts, the source shows a high degree of variability with the presence of soft
flares. The wide energy coverage and high sensitivity of XMM-Newton allows for
the first time a detailed description of the spectral variability.
The source is found to be the superposition of a central (~2 10^8 cm)
Comptonized emission, most probably a corona surrounding the inner edge of an
accretion disk, associated with a more extended (~3 10^10 cm) thermal halo at a
typical temperature of ~0.6 keV with an indication of non-solar abundances.
Most of the variations of the source can be accounted for by a variable
absorption affecting only the central comptonized component and reaching up to
NH ~1.3 10^23 cm^{-2}. The characteristics of the surrounding halo are found
compatible with an irradiated atmosphere of an accretion disc which intercepts
the central emission due to the system high inclination.Comment: 6 pages, 4 figures, accepted for publication in A&A Letters, XMM
special issu
XMM-Newton Observation of the Black Hole Microquasar GRS 1758-258
The XMM-Newton X-ray observatory pointed the galactic black hole candidate
and microquasar GRS 1758-258 in September 2000 for about 10 ks during a program
devoted to the scan of the Galactic Center regions. Preliminary results from
EPIC MOS camera data are presented here. The data indicate that the source
underwent a state transition from its standard low-hard state to an
intermediate state. For the first time in this source the ultra-soft component
of the accretion disk, which black hole binaries display in intermediate or
high-soft states, was clearly detected and measured thanks to the high spectral
capabilities of XMM-Newton.Comment: To appear in the Proc. of the Gamma-Ray Astrophysics 2001 Symposium,
4-6 April 2001, Baltimore, Maryland, U.S.A.. American Institute of Physics
(AIP) series: 5 pages, 6 PS figures, latex, uses aipproc.cls aipproc.st
Heavily obscured AGN with SIMBOL-X
By comparing an optically selected sample of narrow lines AGN with an X-ray
selected sample of AGN we have recently derived an estimate of the intrinsic
(i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick
AGNs. We will use this XLF to derive the number of Compton Thick AGN that will
be found in the SIMBOL-X survey(s).Comment: Talk at the Simbol-X symposium held in Paris, 2-5 December, 2008. 6
pages, 1 figure with three panel
A New X-Ray Flare from the Galactic Nucleus Detected with the XMM-Newton Photon Imaging Cameras
Sgr A*, the compact radio source, believed to be the counterpart of the
massive black hole at the galactic nucleus, was observed to undergo rapid and
intense flaring activity in X-rays with Chandra in October 2000. We report here
the detection with XMM-Newton EPIC cameras of the early phase of a similar
X-ray flare from this source, which occurred on September 4, 2001. The source
2-10 keV luminosity increased by a factor about 20 to reach a level of 4
10^{34} erg s^{-1} in a time interval of about 900 s, just before the end of
the observation. The data indicate that the source spectrum was hard during the
flare. This XMM-Newton observation confirms the results obtained by Chandra and
suggests that, in Sgr A*, rapid and intense X-ray flaring is not a rare event.
This can constrain the emission mechanism models proposed for this source, and
also implies that the crucial multiwavelength observation programs planned to
explore the behaviour of the radio/sub-mm and hard X-ray/gamma-ray emissions
during the X-ray flares, have a good chance of success.Comment: 18 pages, 6 color figures, final version, accepted on October 24,
2002, to appear in ApJ, v584 n2 ApJ February 20, 2003 issu
Source spectral index of heavy cosmic ray nuclei
From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann, et al., 1985) were derived. The energy dependence of the escape length was derived from the observed B/C and sub-iron/iron ratios and the presently available cross sections for C and Fe on H nuclei (Koch-Miramond, et al., 1983). A good fit to the source energy spectra of all these nuclei was obtained by a power law in momentum with an exponent gamma = -2.4+0.05 for the energy range 1 to 25GeV/n (Engelmann, et al., 1985). Comparison with data obtained at higher energy suggested a progressive flattening of these spectra. More accurate spectral indices are sought by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul, et al., this conference). The aim is also to extend the analysis to lower energies down to 0.4GeV/n (kinetic energy observed near Earth), using data obtained by other groups. The only nuclei for which a good data base is possessed in a broad range of energies are O and Fe, so the present study is restricted to these two elements
On the Weyl transverse frames in type I spacetimes
We apply a covariant and generic procedure to obtain explicit expressions of
the transverse frames that a type I spacetime admits in terms of an arbitrary
initial frame. We also present a simple and general algorithm to obtain the
Weyl scalars , and associated with these
transverse frames. In both cases it is only necessary to choose a particular
root of a cubic expression.Comment: 12 pages, submitted to Gen. Rel. Grav. (6-3-2004
- …
