78,227 research outputs found
Language delay is not predictable from available risk factors
Aims. To investigate factors associated with language delay in a cohort of 30-month-old children and determine if identification of language delay requires active contact with families. Methods. Data were collected at a pilot universal 30-month health contact. Health visitors used a simple two-item language screen. Data were obtained for 315 children; language delay was found in 33. The predictive capacity of 13 variables which could realistically be known before the 30-month contact was analysed. Results. Seven variables were significantly associated with language delay in univariate analysis, but in logistic regression only five of these variables remained significant. Conclusion. The presence of one or more risk factors had a sensitivity of 89% and specificity of 45%, but a positive predictive value of only 15%. The presence of one or more of these risk factors thus can not reliably be used to identify language delayed children, nor is it possible to define an “at risk” population because male gender was the only significant demographic factor and it had an unacceptably low specificity (52.5%). It is not possible to predict which children will have language delay at 30 months. Identification of this important ESSENCE disorder requires direct clinical contact with all families
Fast readout of a single Cooper-pair box using its quantum capacitance
We have fabricated a single Cooper-pair box (SCB) together with an on-chip
lumped element resonator. By utilizing the quantum capacitance of the SCB, its
state can be read out by detecting the phase of a radio-frequency (rf) signal
reflected off the resonator. The resonator was optimized for fast readout. By
studying quasiparticle tunneling events in the SCB, we have characterized the
performance of the readout and found that we can perform a single shot parity
measurement in approximately 50 ns. This is an order of magnitude faster than
previously reported measurements.Comment: 7 pages, 5 figure
Advanced protective coating for superalloys
Superior oxidation protection for nickel-base alloys at temperatures up to 1367 K was obtained with cobalt-base alloy coating. Coating had 25 Cr, 14 Al, and 0.5 Y weight percent composition. Coating was applied by electron beam vapor deposition to thickness of 76 to 127 microns
FORTRAN optical lens design program
Computer program uses the principles of geometrical optics to design optical systems containing up to 100 planes, conic or polynomial aspheric surfaces, 7 object points, 6 colors, and 200 rays. This program can be used for the automatic design of optical systems or for the evaluation of existing optical systems
Study of research and development requirements of small gas-turbine combustors
A survey is presented of the major small-engine manufacturers and governmental users. A consensus was undertaken regarding small-combustor requirements. The results presented are based on an evaluation of the information obtained in the course of the study. The current status of small-combustor technology is reviewed. The principal problems lie in liner cooling, fuel injection, part-power performance, and ignition. Projections of future engine requirements and their effect on the combustor are discussed. The major changes anticipated are significant increases in operating pressure and temperature levels and greater capability of using heavier alternative fuels. All aspects of combustor design are affected, but the principal impact is on liner durability. An R&D plan which addresses the critical combustor needs is described. The plan consists of 15 recommended programs for achieving necessary advances in the areas of liner thermal design, primary-zone performance, fuel injection, dilution, analytical modeling, and alternative-fuel utilization
A case study of asthma care in school age children using nurse-coordinated multidisciplinary collaborative practices
Aim: To describe the role of school nursing in leading and coordinating a multidisciplinary networked system of support for children with asthma, and to analyze the strengths and challenges of undertaking and supporting multiagency interprofessional practice.
Background: The growth of networked and interprofessional collaborations arises from the recognition that a number of the most pressing public health problems cannot be addressed by single-discipline or -agency interventions. This paper identifies the potential of school nursing to provide the vision and multiagency leadership required to coordinate multidisciplinary collaboration.
Method: A mixed-method single-case study design using Yin’s approach, including focus groups, interviews, and analysis of policy documents and public health reports.
Results: A model that explains the integrated population approach to managing school-age asthma is described; the role of the lead school nurse coordinator was seen as critical to the development and sustainability of the model.
Conclusion: School nurses can provide strategic multidisciplinary leadership to address pressing public health issues. Health service managers and commissioners need to understand how to support clinicians working across multiagency boundaries and to identify how to develop leadership skills for collaborative interprofessional practice so that the capacity for nursing and other health care professionals to address public health issues does not rely on individual motivation. In England, this will be of particular importance to the commissioning of public health services by local authorities from 2015
The Nature of the Low-Metallicity ISM in the Dwarf Galaxy NGC 1569
We are modeling the spectra of dwarf galaxies from infrared to submillimeter
wavelengths to understand the nature of the various dust components in
low-metallicity environments, which may be comparable to the ISM of galaxies in
their early evolutionary state. The overall nature of the dust in these
environments appears to differ from those of higher metallicity starbursting
systems. Here, we present a study of one of our sample of dwarf galaxies, NGC
1569, which is a nearby, well-studied starbursting dwarf. Using ISOCAM, IRAS,
ISOPHOT and SCUBA data with the Desert et al. (1990) model, we find consistency
with little contribution from PAHs and Very Small Grains and a relative
abundance of bigger colder grains, which dominate the FIR and submillimeter
wavelengths. We are compelled to use 4 dust components, adding a very cold dust
component, to reproduce the submillimetre excess of our observations.Comment: 4 pages, 4 postscript figures. Proceedings of "Infrared and
Submillimeter Astronomy. An International Colloquium to Honor the Memory of
Guy Serra" (2002
Sources of uncertainties in modelling black carbon at the global scale
Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation. The schemes for the atmospheric processing of black carbon that have been tested with the model are (i) a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii) a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of magnitude. The sensitivity to wet scavenging has been tested by varying in-cloud and below-cloud removal. BC lifetime increases by 10% when large scale and convective scale precipitation removal efficiency are reduced by 30%, while the variation is very small when below-cloud scavenging is zero. Since the emission inventories are representative of elemental carbon-like substance, the model output should be compared to elemental carbon measurements and if known, the ratio of black carbon to elemental carbon mass should be taken into account when the model is compared with black carbon observation
- …