22,289 research outputs found

    Away-side azimuthal distribution in a Markovian parton scattering model

    Full text link
    An event generator is constructed on the basis of a model of multiple scattering of partons so that the trajectory of a parton traversing a dense and expanding medium can be tracked. The parameters in the code are adjusted to fit the \Delta\phi azimuthal distribution on the far side when the trigger momentum is in the non-perturbative region, p_T(trigger)<4 GeV/c. The dip-bump structure for 1<p_T(assoc)<2.5 GeV/c is reproduced by averaging over the exit tracks of deflected jets. An essential characteristic of the model, called Markovian Parton Scattering (MPS) model, is that the scattering angle is randomly selected in the forward cone at every step of a trajectory that is divided into many discrete steps in a semi-classical approximation of the non-perturbative scattering process. Energy loss to the medium is converted to thermal partons which hadronize by recombination to give rise to the pedestal under the bumps. When extended to high trigger momentum with \pt(trigger) >8 GeV/c, the model reproduces the single-peak structure observed by STAR without invoking any new dynamical mechanism.Comment: 20 pages + 3 figure

    Hot-carrier-induced deep-level defects from gated-diode measurements on MOSFETs

    Get PDF
    The reverse-bias current in the gated-diode configuration of hot-carrier degraded MOS devices was measured. It is shown that interface defects created by the degradation contribute predominantly to the generation current. The spatial distribution of the deep-level defects was obtained by means of device simulation

    Baryon number and strangeness: signals of a deconfined antecedent

    Full text link
    The correlation between baryon number and strangeness is used to discern the nature of the deconfined matter produced at vanishing chemical potential in high-energy nuclear collisions at the BNL RHIC. Comparisons of results of various phenomenological models with correlations extracted from lattice QCD calculations suggest that a quasi-particle picture applies. At finite baryon densities, such as those encountered at the CERN SPS, it is demonstrated that the presence of a first-order phase transition and the accompanying development of spinodal decomposition would significantly enhance the number of strangeness carriers and the associated fluctuations.Comment: 10 pages, 4 figures, latex, to appear in the proceedings of the Workshop on Correlations and Fluctuations in Relativistic Nuclear collisions, (MIT, April 21-23,2005

    The chemical equilibration volume: measuring the degree of thermalization

    Full text link
    We address the issue of the degree of equilibrium achieved in a high energy heavy-ion collision. Specifically, we explore the consequences of incomplete strangeness chemical equilibrium. This is achieved over a volume V of the order of the strangeness correlation length and is assumed to be smaller than the freeze-out volume. Probability distributions of strange hadrons emanating from the system are computed for varying sizes of V and simple experimental observables based on these are proposed. Measurements of such observables may be used to estimate V and as a result the degree of strangeness chemical equilibration achieved. This sets a lower bound on the degree of kinetic equilibrium. We also point out that a determination of two-body correlations or second moments of the distributions are not sufficient for this estimation.Comment: 16 pages, 15 figures, revtex

    A Two-Parameter Recursion Formula For Scalar Field Theory

    Get PDF
    We present a two-parameter family of recursion formulas for scalar field theory. The first parameter is the dimension (D)(D). The second parameter (ζ\zeta) allows one to continuously extrapolate between Wilson's approximate recursion formula and the recursion formula of Dyson's hierarchical model. We show numerically that at fixed DD, the critical exponent γ\gamma depends continuously on ζ\zeta. We suggest the use of the ζ\zeta -independence as a guide to construct improved recursion formulas.Comment: 7 pages, uses Revtex, one Postcript figur

    Tunable magnetization damping in transition metal ternary alloys

    Full text link
    We show that magnetization damping in Permalloy, Ni80Fe20 (``Py''), can be enhanced sufficiently to reduce post-switching magnetization precession to an acceptable level by alloying with the transition metal osmium (Os). The damping increases monotonically upon raising the Os-concentration in Py, at least up to 9% of Os. Other effects of alloying with Os are suppression of magnetization and enhancement of in-plane anisotropy. Magnetization damping also increases significantly upon alloying with the five other transition metals included in this study (4d-elements: Nb, Ru, Rh; 5d-elements: Ta, Pt) but never as strongly as with Os.Comment: 4 pages, submitted to Appl. Phys. Let

    Short-pulse photoassociation in rubidium below the D1_1 line

    Full text link
    Photoassociation of two ultracold rubidium atoms and the subsequent formation of stable molecules in the singlet ground and lowest triplet states is investigated theoretically. The method employs laser pulses inducing transitions via excited states correlated to the 5S+5P1/25S+5P_{1/2} asymptote. Weakly bound molecules in the singlet ground or lowest triplet state can be created by a single pulse while the formation of more deeply bound molecules requires a two-color pump-dump scenario. More deeply bound molecules in the singlet ground or lowest triplet state can be produced only if efficient mechanisms for both pump and dump steps exist. While long-range 1/R31/R^3-potentials allow for efficient photoassociation, stabilization is facilitated by the resonant spin-orbit coupling of the 0u+0_u^+ states. Molecules in the singlet ground state bound by a few wavenumbers can thus be formed. This provides a promising first step toward ground state molecules which are ultracold in both translational and vibrational degrees of freedom

    Towards Functional Flows for Hierarchical Models

    Get PDF
    The recursion relations of hierarchical models are studied and contrasted with functional renormalisation group equations in corresponding approximations. The formalisms are compared quantitatively for the Ising universality class, where the spectrum of universal eigenvalues at criticality is studied. A significant correlation amongst scaling exponents is pointed out and analysed in view of an underlying optimisation. Functional flows are provided which match with high accuracy all known scaling exponents from Dyson's hierarchical model for discrete block-spin transformations. Implications of the results are discussed.Comment: 17 pages, 4 figures; wording sharpened, typos removed, reference added; to appear with PR

    A universal ionization threshold for strongly driven Rydberg states

    Full text link
    We observe a universal ionization threshold for microwave driven one-electron Rydberg states of H, Li, Na, and Rb, in an {\em ab initio} numerical treatment without adjustable parameters. This sheds new light on old experimental data, and widens the scene for Anderson localization in light matter interaction.Comment: 4 pages, 1 figur
    corecore