We address the issue of the degree of equilibrium achieved in a high energy
heavy-ion collision. Specifically, we explore the consequences of incomplete
strangeness chemical equilibrium. This is achieved over a volume V of the order
of the strangeness correlation length and is assumed to be smaller than the
freeze-out volume. Probability distributions of strange hadrons emanating from
the system are computed for varying sizes of V and simple experimental
observables based on these are proposed. Measurements of such observables may
be used to estimate V and as a result the degree of strangeness chemical
equilibration achieved. This sets a lower bound on the degree of kinetic
equilibrium. We also point out that a determination of two-body correlations or
second moments of the distributions are not sufficient for this estimation.Comment: 16 pages, 15 figures, revtex