23,560 research outputs found

    Letting it all spill out: the benefits of venting for creative writing teachers and students

    Get PDF
    The need to provide solutions to pandemic deterritorialized teaching took effect almost overnight in early spring 2020. There was an immediate amplification of digital literacy requirements. The need for multi-modal fluency and connectivity intensified throughout the pandemic and its effects were felt nowhere near as profoundly as in education. Overnight new learning systems had to be designed and implemented. New technology needed to rapidly be acquired and shared. Teachers had to redesign teaching curricula so that content would be fit for the new modes of delivery that was emerging. Students and teachers were inundated with ‘new’ as innovation became a key force underpinning the production and consumption of pedagogy. The challenges were many, and how we approached the challenges became vital to our survival and success within a period of monumental distress. This research looks at three models that were used to assist teachers in managing expectations during the pandemic

    Elevation gradients of flower visitation on a mesa in the Nama Karoo, South Africa

    Get PDF
    We investigated the composition of the insect fauna visiting flowers on the mesa of Tafelberg (Eastern Cape, South Africa). During the season-long study, 1825 individuals of 55 insect species were recorded visiting flowers of 28 species plants within permanent quadrats. Four taxa werevery common as flower visitors, with between 2-300 individual visits recorded (one species from each of the orders of Hymenoptera, Diptera, Lepidoptera and Coleoptera). Two-thirds of all visits were to the composite Pencia punctata (Asteraceae). There was a strong pattern to the diversity of the flower-visiting fauna, with diversity increasing with elevation. This pattern matched the availability of flowers, which were much more abundant on the top of Tafelburg than on its lower slopes

    Gravitino Dark Matter and the Cosmic Lithium Abundances

    Full text link
    Supersymmetric extensions of the standard model of particle physics assuming the gravitino to be the lightest supersymmetric particle (LSP), and with the next-to-LSP decaying to the gravitino during Big Bang nucleosynthesis, are analyzed. Particular emphasis is laid on their potential to solve the "Li7 problem", an apparent factor 2-4 overproduction of Li7 in standard Big Bang nucleosynthesis (BBN), their production of cosmologically important amounts of Li6, as well as the resulting gravitino dark matter densities in these models. The study includes several improvements compared to prior studies. Heavy gravitinos in the constrained minimal supersymmetric standard model (CMMSM) are reanalyzed, whereas light gravitinos in gauge-mediated supersymmetry breaking scenarios (GMSB) are studied for the first time. It is confirmed that decays of NLSP staus to heavy gravitinos, while producing all the dark matter, may at the same time resolve the Li7 problem. For NLSP decay times ~ 1000 sec, such scenarios also lead to cosmologically important Li6 (and possibly Be9) abundances. However, as such scenarios require heavy > 1 TeV staus they are likely not testable at the LHC. It is found that decays of NLSP staus to light gravitinos may lead to significant Li6 (and Be9) abundances, whereas NLSP neutralinos decaying into light gravitinos may solve the Li7 problem. Though both scenarios are testable at the LHC they may not lead to the production of the bulk of the dark matter. A section of the paper outlines particle properties required to significantly reduce the Li7 abundance, and/or enhance the Li6 (and possibly Be9) abundances, by the decay of an arbitrary relic particle.Comment: 13 pages (revtex), 9 figures, minor changes, submitted to PR

    Integrating Community-Based Interventions to Reverse the Convergent TB/HIV Epidemics in Rural South Africa.

    Get PDF
    The WHO recommends integrating interventions to address the devastating TB/HIV co-epidemics in South Africa, yet integration has been poorly implemented and TB/HIV control efforts need strengthening. Identifying infected individuals is particularly difficult in rural settings. We used mathematical modeling to predict the impact of community-based, integrated TB/HIV case finding and additional control strategies on South Africa's TB/HIV epidemics. We developed a model incorporating TB and HIV transmission to evaluate the effectiveness of integrating TB and HIV interventions in rural South Africa over 10 years. We modeled the impact of a novel screening program that integrates case finding for TB and HIV in the community, comparing it to status quo and recommended TB/HIV control strategies, including GeneXpert, MDR-TB treatment decentralization, improved first-line TB treatment cure rate, isoniazid preventive therapy, and expanded ART. Combining recommended interventions averted 27% of expected TB cases (95% CI 18-40%) 18% HIV (95% CI 13-24%), 60% MDR-TB (95% CI 34-83%), 69% XDR-TB (95% CI 34-90%), and 16% TB/HIV deaths (95% CI 12-29). Supplementing these interventions with annual community-based TB/HIV case finding averted a further 17% of TB cases (44% total; 95% CI 31-56%), 5% HIV (23% total; 95% CI 17-29%), 8% MDR-TB (68% total; 95% CI 40-88%), 4% XDR-TB (73% total; 95% CI 38-91%), and 8% TB/HIV deaths (24% total; 95% CI 16-39%). In addition to increasing screening frequency, we found that improving TB symptom questionnaire sensitivity, second-line TB treatment delays, default before initiating TB treatment or ART, and second-line TB drug efficacy were significantly associated with even greater reductions in TB and HIV cases. TB/HIV epidemics in South Africa were most effectively curtailed by simultaneously implementing interventions that integrated community-based TB/HIV control strategies and targeted drug-resistant TB. Strengthening existing TB and HIV treatment programs is needed to further reduce disease incidence

    Endogenous Versus Exogenous Shocks in Complex Networks: an Empirical Test Using Book Sale Ranking

    Full text link
    Are large biological extinctions such as the Cretaceous/Tertiary KT boundary due to a meteorite, extreme volcanic activity or self-organized critical extinction cascades? Are commercial successes due to a progressive reputation cascade or the result of a well orchestrated advertisement? Determining the chain of causality for extreme events in complex systems requires disentangling interwoven exogenous and endogenous contributions with either no clear or too many signatures. Here, we study the precursory and recovery signatures accompanying shocks, that we test on a unique database of the Amazon sales ranking of books. We find clear distinguishing signatures classifying two types of sales peaks. Exogenous peaks occur abruptly and are followed by a power law relaxation, while endogenous sale peaks occur after a progressively accelerating power law growth followed by an approximately symmetrical power law relaxation which is slower than for exogenous peaks. These results are rationalized quantitatively by a simple model of epidemic propagation of interactions with long memory within a network of acquaintances. The slow relaxation of sales implies that the sales dynamics is dominated by cascades rather than by the direct effects of news or advertisements, indicating that the social network is close to critical.Comment: 5 pages including 3 figures final version published in Physical Review Letter

    A Strong Szego Theorem for Jacobi Matrices

    Full text link
    We use a classical result of Gollinski and Ibragimov to prove an analog of the strong Szego theorem for Jacobi matrices on l2(N)l^2(\N). In particular, we consider the class of Jacobi matrices with conditionally summable parameter sequences and find necessary and sufficient conditions on the spectral measure such that k=nbk\sum_{k=n}^\infty b_k and k=n(ak21)\sum_{k=n}^\infty (a_k^2 - 1) lie in l12l^2_1, the linearly-weighted l2l^2 space.Comment: 26 page

    Torque driven ferromagnetic swimmers

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this recordMicroscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, including diagnostics and drug delivery. In this paper, we realize a macroscopic single particle ferromagnetic swimmer experimentally and investigate its swimming properties. The flagella-based swimmer is comprised of a hard ferromagnetic head attached to a flexible tail. We investigate the dynamic performance of the swimmer on the air-liquid interface as a function of the external magnetic field parameters (frequency and amplitude of an applied magnetic field). We show that the speed of the swimmer can be controlled by manipulating the strength and frequency of the external magnetic field (<3.5 mT) and that the propagation direction has a dependence on parameters of the external magnetic field. The experimental results are compared to a theoretical model based on three beads, one of which having a fixed magnetic moment and the other two non-magnetic, connected via elastic filaments. The model shows sufficient complexity to satisfy the “non-reciprocity” condition and gives good agreement with experiment. Via a simple conversion, we also demonstrate a fluid pump and investigate the induced flow. This investigation paves the way to the fabrication of such swimmers and fluid pump systems on a micro-scale, promising a variety of microfluidic applications.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 665440. We also acknowledge support via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1)

    Discrete Analysis of a Composite Video Signal

    Get PDF
    In this paper the problem of representing the composite video signal for monochromatic T. V. transmission is examined and a method for computing the required spectral bandwidth is devised suitable for computer applications. The results obtained numerically are compared to measured results and to analytical solutions for a determinate signal for special cases. Comparison is made with some maximum horizontal resolution methods with a resulting decrease in bandwidth requirements for most applications

    Generalized Swiss-cheese cosmologies: Mass scales

    Full text link
    We generalize the Swiss-cheese cosmologies so as to include nonzero linear momenta of the associated boundary surfaces. The evolution of mass scales in these generalized cosmologies is studied for a variety of models for the background without having to specify any details within the local inhomogeneities. We find that the final effective gravitational mass and size of the evolving inhomogeneities depends on their linear momenta but these properties are essentially unaffected by the details of the background model.Comment: 10 pages, 14 figures, 1 table, revtex4, Published form (with minor corrections
    corecore