2,187 research outputs found

    High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter

    Full text link
    Context. High contrast imaging is a powerful technique to search for gas giant planets and brown dwarfs orbiting at separation larger than several AU. Around solar-type stars, giant planets are expected to form by core accretion or by gravitational instability, but since core accretion is increasingly difficult as the primary star becomes lighter, gravitational instability would be the a probable formation scenario for yet-to-be-found distant giant planets around a low-mass star. A systematic survey for such planets around M dwarfs would therefore provide a direct test of the efficiency of gravitational instability. Aims. We search for gas giant planets orbiting around late-type stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep high resolution images of 16 targets with the adaptive optic system of VLT-NACO in the Lp band, using direct imaging and angular differential imaging. This is currently the largest and deepest survey for Jupiter-mass planets around Mdwarfs. We developed and used an integrated reduction and analysis pipeline to reduce the images and derive our 2D detection limits for each target. The typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes beyond 1". For each target we also determine the probability of detecting a planet of a given mass at a given separation in our images. Results. We derived accurate detection probabilities for planetary companions, taking into account orbital projection effects, with in average more than 50% probability to detect a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong constraints on the existence of Jupiter-mass planets around this sample of young M-dwarfs.Comment: Accepted for publication in A&

    Anaerobes Wachstum neuartiger sulfatreduzierender und nitratreduzierender Bakterien auf n-Alkanen und Erdöl

    No full text

    Verification of a localization criterion for several disordered media

    Full text link
    We analytically compute a localization criterion in double scattering approximation for a set of dielectric spheres or perfectly conducting disks uniformly distributed in a spatial volume which can be either spherical or layered. For every disordered medium, we numerically investigate a localization criterion, and examine the influence of the system parameters on the wavelength localization domains.Comment: 30 pages, LateX, amstex, revtex styles, 20 figure

    ARCHI: pipeline for light curve extraction of CHEOPS background star

    Full text link
    High precision time series photometry from space is being used for a number of scientific cases. In this context, the recently launched CHEOPS (ESA) mission promises to bring 20 ppm precision over an exposure time of 6 hours, when targeting nearby bright stars, having in mind the detailed characterization of exoplanetary systems through transit measurements. However, the official CHEOPS (ESA) mission pipeline only provides photometry for the main target (the central star in the field). In order to explore the potential of CHEOPS photometry for all stars in the field, in this paper we present archi, an additional open-source pipeline module{\dag}to analyse the background stars present in the image. As archi uses the official Data Reduction Pipeline data as input, it is not meant to be used as independent tool to process raw CHEOPS data but, instead, to be used as an add-on to the official pipeline. We test archi using CHEOPS simulated images, and show that photometry of background stars in CHEOPS images is only slightly degraded (by a factor of 2 to 3) with respect to the main target. This opens a potential for the use of CHEOPS to produce photometric time series of several close-by targets at once, as well as to use different stars in the image to calibrate systematic errors. We also show one clear scientific application where the study of the companion light curve can be important for the understanding of the contamination on the main target.Comment: 14 pages, 13 figures, accepted for publication in MNRAS, all code available at https://github.com/Kamuish/arch

    Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b

    Full text link
    Atmospheric escape has been detected from the exoplanet HD 209458b through transit observations of the hydrogen Lyman-alpha line. Here we present spectrally resolved Lyman-alpha transit observations of the exoplanet HD 189733b at two different epochs. These HST/STIS observations show for the first time, that there are significant temporal variations in the physical conditions of an evaporating planetary atmosphere. While atmospheric hydrogen is not detected in the first epoch observations, it is observed at the second epoch, producing a transit absorption depth of 14.4+/-3.6% between velocities of -230 to -140 km/s. Contrary to HD 209458b, these high velocities cannot arise from radiation pressure alone and require an additional acceleration mechanism, such as interactions with stellar wind protons. The observed absorption can be explained by an atmospheric escape rate of neutral hydrogen atoms of about 10^9 g/s, a stellar wind with a velocity of 190 km/s and a temperature of ~10^5K. An X-ray flare from the active star seen with Swift/XRT 8 hours before the second-epoch observation supports the idea that the observed changes within the upper atmosphere of the planet can be caused by variations in the stellar wind properties, or by variations in the stellar energy input to the planetary escaping gas (or a mix of the two effects). These observations provide the first indication of interaction between the exoplanet's atmosphere and stellar variations.Comment: To be published in A&A Letters, June 28, 201

    High-energy environment of super-Earth 55 Cnc e I: Far-UV chromospheric variability as a possible tracer of planet-induced coronal rain

    Full text link
    The irradiation of close-in planets by their star influences their evolution and might be responsible for a population of ultra-short period planets eroded to their bare core. In orbit around a bright, nearby G-type star, the super-Earth 55 Cnc e offers the possibility to address these issues through UV transit observations. We used the Hubble Space Telescope to observe the transit in the FUV over 3 epochs in Apr. 2016, Jan. 2017, and Feb. 2017. These observations reveal significant short- and long-term variability in 55 Cnc chromospheric emission lines. In the last 2 epochs, we detected a larger flux in the C III, Si III, and Si IV lines after the planet passed the approaching quadrature, followed by a flux decrease in the Si IV doublet. In the second epoch these variations are contemporaneous with flux decreases in the Si II and C II doublet. All epochs show flux decreases in the N V doublet as well, albeit at different orbital phases. These flux decreases are consistent with absorption from optically thin clouds of gas, are mostly localized at low and redshifted radial velocities in the star rest frame, and occur preferentially before and during the transit. These 3 points make it unlikely that the variations are purely stellar, yet we show that the occulting material is also unlikely to originate from the planet. We tentatively propose that the motion of 55 Cnc e at the fringes of the stellar corona leads to the formation of a cool coronal rain. The inhomogeneity and temporal evolution of the stellar corona would be responsible for the differences between the visits. Additional variations are detected in the C II doublet in the first epoch and in the O I triplet in all epochs with a different behavior that points toward intrinsic stellar variability. Further observations at FUV wavelengths are required to disentangle between star-planet interactions and the activity of the starComment: 22 pages, 20 figures, accepted for publication in A&

    Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α\alpha line

    Full text link
    The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope to study the stellar emission at Lyman-α\alpha, to assess the presence of hydrogen exospheres around the two inner planets, and to determine their UV irradiation. We detect the Lyman-α\alpha line of TRAPPIST-1, making it the coldest exoplanet host star for which this line has been measured. We reconstruct the intrinsic line profile, showing that it lacks broad wings and is much fainter than expected from the stellar X-ray emission. TRAPPIST-1 has a similar X-ray emission as Proxima Cen but a much lower Ly-α\alpha emission. This suggests that TRAPPIST-1 chromosphere is only moderately active compared to its transition region and corona. We estimated the atmospheric mass loss rates for all planets, and found that despite a moderate extreme UV emission the total XUV irradiation could be strong enough to strip the atmospheres of the inner planets in a few billions years. We detect marginal flux decreases at the times of TRAPPIST-1b and c transits, which might originate from stellar activity, but could also hint at the presence of extended hydrogen exospheres. Understanding the origin of these Lyman-α\alpha variations will be crucial in assessing the atmospheric stability and potential habitability of the TRAPPIST-1 planets.Comment: Published in A&A as a Letter to the Edito

    Evidence for a spectroscopic direct detection of reflected light from 51 Peg b

    Full text link
    The detection of reflected light from an exoplanet is a difficult technical challenge at optical wavelengths. Even though this signal is expected to replicate the stellar signal, not only is it several orders of magnitude fainter, but it is also hidden among the stellar noise. We apply a variant of the cross-correlation technique to HARPS observations of 51 Peg to detect the reflected signal from planet 51 Peg b. Our method makes use of the cross-correlation function of a binary mask with high-resolution spectra to amplify the minute planetary signal that is present in the spectra by a factor proportional to the number of spectral lines when performing the cross correlation. The resulting cross-correlation functions are then normalized by a stellar template to remove the stellar signal. Carefully selected sections of the resulting normalized CCFs are stacked to increase the planetary signal further. The recovered signal allows probing several of the planetary properties, including its real mass and albedo. We detect evidence for the reflected signal from planet 51 Peg b at a significance of 3\sigma_noise. The detection of the signal permits us to infer a real mass of 0.46^+0.06_-0.01 M_Jup (assuming a stellar mass of 1.04\;M_Sun) for the planet and an orbital inclination of 80^+10_-19 degrees. The analysis of the data also allows us to infer a tentative value for the (radius-dependent) geometric albedo of the planet. The results suggest that 51Peg b may be an inflated hot Jupiter with a high albedo (e.g., an albedo of 0.5 yields a radius of 1.9 \pm 0.3 R_Jup for a signal amplitude of 6.0\pm0.4 x 10^-5). We confirm that the method we perfected can be used to retrieve an exoplanet's reflected signal, even with current observing facilities. The advent of next generation of observing facilities will yield new opportunities for this type of technique to probe deeper into exoplanets.Comment: 9 pages, 6 figure

    The long egress of GJ~436b's giant exosphere

    Full text link
    The M dwarf GJ 436 hosts a transiting warm Neptune known to experience atmospheric escape. Previous observations revealed the presence of a giant hydrogen exosphere transiting the star for more than 5 h, and absorbing up to 56% of the flux in the blue wing of the stellar Lyman-{\alpha} line of neutral hydrogen (H i Ly{\alpha}). The unexpected size of this comet-like exosphere prevented observing the full transit of its tail. In this Letter, we present new Ly{\alpha} observations of GJ 436 obtained with the Space Telescope Imaging Spectrograph (STIS) instrument onboard the Hubble Space Telescope. The stability of the Ly{\alpha} line over six years allowed us to combine these new observations with archival data sets, substantially expanding the coverage of the exospheric transit. Hydrogen atoms in the tail of the exospheric cloud keep occulting the star for 10-25 h after the transit of the planet, remarkably confirming a previous prediction based on 3D numerical simulations with the EVaporating Exoplanet code (EVE). This result strengthens the interpretation that the exosphere of GJ 436b is shaped by both radiative braking and charge exchanges with the stellar wind. We further report flux decreases of 15 +/- 2% and 47 +/- 10% in the red wing of the Ly{\alpha} line and in the line of ionised silicon (Si iii). Despite some temporal variability possibly linked with stellar activity, these two signals occur during the exospheric transit and could be of planetary origin. Follow-up observations will be required to assess the possibility that the redshifted Ly{\alpha} and Si iii absorption signatures arise from interactions between the exospheric flow and the magnetic field of the star.Comment: 10 pages, 7 figures, published in A&

    The JADE code: Coupling secular exoplanetary dynamics and photo-evaporation

    Get PDF
    Close-in planets evolve under extreme conditions, raising questions about their origins and current nature. Two predominant mechanisms are orbital migration, which brings them close to their star, and atmospheric escape under the resulting increased irradiation. Yet, their relative roles remain unclear because we lack models that couple the two mechanisms with high precision on secular timescales. To address this need, we developed the JADE code, which simulates the secular atmospheric and dynamical evolution of a planet around its star, and can include the perturbation induced by a distant third body. On the dynamical side, the 3D evolution of the orbit is modeled under stellar and planetary tidal forces, a relativistic correction, and the action of the distant perturber. On the atmospheric side, the vertical structure of the atmosphere is integrated over time based on its thermodynamical properties, inner heating, and the evolving stellar irradiation, which results, in particular, in photo-evaporation. The JADE code is benchmarked on GJ436 b, prototype of evaporating giants on eccentric, misaligned orbits at the edge of the hot Neptunes desert. We confirm that its orbital architecture is well explained by Kozai migration and unveil a strong interplay between its atmospheric and orbital evolution. During the resonance phase, the atmosphere pulsates in tune with the Kozai cycles, which leads to stronger tides and an earlier migration. This triggers a strong evaporation several Gyr after the planet formed, refining the paradigm that mass loss is dominant in the early age of close-in planets. This suggests that the edge of the desert could be formed of warm Neptunes whose evaporation was delayed by migration. It strengthens the importance of coupling atmospheric and dynamical evolution over secular timescales, which the JADE code will allow simulating for a wide range of systems.Comment: 20 pages, 2 figures, accepted in A&
    • 

    corecore