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ABSTRACT

Close-in planets evolve under extreme conditions, which raises questions about their origins and current nature. Two evolutionary
mechanisms thought to play a predominant role are orbital migration, which brings them close to their star, and atmospheric escape
under the resulting increased irradiation. Yet their relative roles remain poorly understood, in part because we lack numerical models
that couple the two mechanisms with high precision and on secular timescales. To address this need, we developed the Joining
Atmosphere and Dynamics for Exoplanets (JADE) code, which simulates the secular atmospheric and dynamical evolution of a
specific planet around its star, and can include the perturbation induced by a distant third body. On the dynamical side, the three
dimensional evolution of the orbit is modeled under stellar and planetary tidal forces, a relativistic correction, and the action of the
distant perturber. On the atmospheric side, the vertical structure of the atmosphere is integrated over time based on its thermodynamical
properties, inner heating, and the evolving stellar irradiation, which results, in particular, in extreme ultraviolet (XUV)-induced photo-
evaporation.
The JADE code is benchmarked on GJ436 b, which is a prototype of the evaporating giants on eccentric, misaligned orbits at the edge
of the hot Neptunes desert. We confirm previous results that the orbital architecture of GJ436 b is well explained by Kozai migration
and bring to light a strong interplay between its atmospheric and orbital evolution. During the resonance phase, the atmosphere
pulsates in tune with the Kozai cycles, which leads to stronger tides and an earlier migration. This triggers a strong atmospheric
evaporation several billion years after the planet formed, refining the paradigm that mass loss is dominant in the early age of close-in
planets. These results suggest that the edge of the desert could be formed of warm Neptunes whose evaporation was delayed by Kozai
migration. They strengthen the importance of coupling atmospheric and dynamical evolution over secular timescales, which the JADE
code will allow for one to simulate for a wide range of systems.

Key words. planetary systems – planets and satellites: dynamical evolution and stability – planet-star interactions – planets and
satellites: atmospheres – methods: numerical – stars: individual: Gliese 436

1. Introduction

As of December 2020, more than 4300 exoplanets have been
found, nearly half of which orbit in less than 10 days around
their host star1. This population of close-in planets ranges from
small rocky objects to Jupiter-sized giants, even so it displays a
surprising deficit of Neptune-sized planets on very short orbits
(<∼3 days; Lecavelier des Etangs 2007; Davis & Wheatley 2009;
Szabó et al. 2011; Beaugé & Nesvorný 2013; Lundkvist et al.
2016; Mazeh et al. 2016). This so-called desert of hot Neptunes
is a key feature in exoplanet science, as the imprint of processes
that determined the evolution and present nature of close-in plan-
ets. While the desert was the focus of many studies over the last
decade, its origin and the properties of planets defining its bor-
ders remain unclear (e.g., Mazeh et al. 2016; Zahnle & Catling
2017; Owen & Lai 2018).

Hot Neptunes may have lost their atmosphere through evap-
oration, which is an efficient hydrodynamic escape driven by
the stellar X-ray and extreme ultraviolet (XUV) radiation (e.g.,
Vidal-Madjar et al. 2003; Lammer et al. 2003; Lecavelier des

1 http://exoplanet.eu/; https://exoplanetarchive.ipac.
caltech.edu/

Etangs 2007; Murray-Clay et al. 2009; Owen & Jackson 2012;
Tripathi et al. 2015). However, our understanding of atmospheric
escape in irradiation conditions unmet in the Solar System re-
mains limited by the lack of direct observations. For years, only
hot Jupiters were observed losing their atmosphere (e.g., Vidal-
Madjar et al. 2003; Lecavelier des Etangs et al. 2012), at tremen-
dous rates of thousands of tons per second that nonetheless do
not affect the evolution of these massive planets (Hubbard et al.
2007; Ehrenreich & Désert 2011). The erosion of hot Neptunes,
on the contrary, is thought to have formed a fraction of the mini-
Neptunes and hot rocky planets at the lower-radius border of the
desert (Lecavelier des Etangs et al. 2004; Owen & Wu 2013;
Lopez & Fortney 2013). Alternatively, it was proposed that or-
bital migration played a role in shaping the desert, with different
classes of planets forming differently (e.g., Batygin et al. 2016;
Mazeh et al. 2016; Lee & Chiang 2016) or following a differ-
ent dynamical evolution (Matsakos & Königl 2016; Owen & Lai
2018). The dynamical history of a planet can be traced back in
time by its present-day orbital architecture (the shape and orien-
tation of its orbit around its star, see review by Triaud 2018), but
most measurements have been obtained for Jupiter-sized planets
around early-type stars, limiting our ability to assess the impact
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of migration on a large variety of systems. Understanding the
origins of the different classes of planets around the desert and
their possible filiation thus requires that we obtain observations
of escape and architecture for a wider range of systems, and that
we use them to inform models simulating their coupled atmo-
spheric and dynamical evolution.

Indeed, when and how a planet migrates determines how
much and how long it gets irradiated. Close-in planets that mi-
grated within the proto-planetary disk are expected to lose their
atmosphere early-on (e.g, Jackson et al. 2012; Jin et al. 2014),
as they migrate through the protoplanetary disk and get close to
the young energetic host star (e.g., Baruteau & Masset 2013).
Such processes are further expected to maintain disk and plan-
etary orbits aligned (e.g., Marzari & Nelson 2009). Yet some
migration pathways can act over much longer time scales, as for
secular migration (Wu & Lithwick 2011), scattering (Ford & Ra-
sio 2008; Nagasawa et al. 2008; Nagasawa & Ida 2011), and
Kozai migration (Wu & Murray 2003; Fabrycky & Tremaine
2007; Naoz et al. 2011; Teyssandier et al. 2013), raising ques-
tions about the atmospheric evolution of a planet getting close to
its star billions of years after its formation. These mechanisms
can misalign planetary systems, offering the possibility to dis-
entangle short- and long-term dynamical evolution. Many hot
Jupiters, for example, are on misaligned orbits that would natu-
rally result from high-eccentricity migration (Naoz et al. 2012;
Albrecht et al. 2012; Davies et al. 2014; Petrovich & Tremaine
2016; Teyssandier et al. 2019).

Recent discoveries brought new insights into these questions.
Transit observations with the Hubble Space Telescope led to the
detection of giant clouds of hydrogen around two warm Nep-
tunes located at the border of the desert as for GJ436 b (Kulow
et al. 2014; Ehrenreich et al. 2015; Lavie et al. 2017; dos San-
tos et al. 2019) and GJ3470 b (Bourrier et al. 2018a), supporting
the atmospheric erosion of hot Neptunes as a key mechanism.
GJ3470 b could already have lost up to half of its mass over its
2 Gyr lifetime and might keep eroding until it gives birth to a
mini-Neptune (Bourrier et al. 2018a). GJ436 b is subjected to
a smaller present-day mass loss than GJ3470 b (Bourrier et al.
2015, 2016), but is surprisingly more massive (23 vs 13 MEarth)
for its age (4 - 8 Gyr). Indeed, GJ436 b would likely have lost
as much mass as GJ3470 b in its youth if it migrated early-on,
raising questions about how and when it reached its present loca-
tion. Interestingly, the orbit of GJ436 b is eccentric (suggesting
the planet has not been orbiting for long close to its M dwarf
host, Tong & Zhou 2009; Beust et al. 2012) and it was recently
shown to be nearly polar (Bourrier et al. 2018b). Both features
are naturally explained if the planet was brought close to its star
after several billion years by gravitational interactions with an
outer companion (Bourrier et al. 2018b). This late Kozai mi-
gration could have triggered the evaporation of GJ436 b, which
would further explain its moderate erosion.

This led Bourrier et al. (2018b) to propose that GJ436 b is
the prototype for a class of warm Neptunes that underwent or-
bital migration long after their formation and reached the fringes
of the desert in recent times (Owen & Lai 2018). These planets
would either have already reached a stable orbit far enough from
their star to be safe from evaporation, like GJ436 b, or could
still be migrating and will erode as they move farther into the
desert. The nonzero eccentricity of most warm Neptunes at the
edge of the desert could be a consequence of this scenario (Cor-
reia et al. 2020), but an in-depth characterization of the orbital
architecture and evaporation status of close-in planets all around
the desert is needed to investigate this theory. This effort needs
to be complemented by numerical models able to simulate the

detailed secular evolution of close-in planets (i.e., on time scales
comparable to the age of the system) under the coupled effects
of atmospheric escape and orbital migration. The purpose of this
paper is to present the JADE code, which was developed to ad-
dress this need. In Sect. 2, we describe the structure of the model
we have developed. In particular, we give a general overview of
the JADE code, then we focus successively on the orbital and at-
mospheric features of the model. In Sect. 3, we apply the JADE
code to the particular case of GJ436 b to compare our results
on its dynamical evolution with published studies and to inves-
tigate its coupling with atmospheric evolution. Finally, conclu-
sions and perspectives are presented in Sect. 4.

2. Description of the JADE code

2.1. General description

Various models have been designed to simulate the precise dy-
namical behavior of close-in planet systems, including long-
term processes such as tidal friction or Kozai-Lidov oscillations
(e.g., Eggleton et al. 1998; Eggleton & Kiseleva-Eggleton 2001;
Mardling & Lin 2002; Fabrycky & Tremaine 2007; Beust et al.
2012). These models generally consider planets as particles or
rigid spheres and thus do not take into account the planetary
structure and its evolution (e.g., due to atmospheric mass loss
or the cooling of the core).

On the other hand, atmospheric models have been devel-
oped for a wide range of exoplanets and purposes. They can be
roughly separated between lower-atmosphere models, describ-
ing the layers up to the base of the thermosphere (e.g., Guillot
& Showman 2002; Madhusudhan & Seager 2009; Guillot 2010;
Heng et al. 2012; Komacek & Youdin 2017), and models that
simulate the expansion of the thermosphere and exosphere un-
der the irradiation of the star (e.g., Yelle 2004; Owen & Jackson
2012; Bourrier & Lecavelier des Etangs 2013; Koskinen et al.
2013; Salz et al. 2016b; Johnstone et al. 2018). These models
provide a detailed depiction of the atmosphere for a given state
of the planetary system, but do not follow its evolution over long
time scales. Models that were developed for this purpose, in par-
ticular to study the impact of evaporation, generally do not ac-
count for the evolution of the planetary orbit (e.g., Lopez et al.
2012; Lopez & Fortney 2013; Owen & Wu 2017; Lopez 2017;
Kubyshkina et al. 2018b).

Studies that investigated the coupling between atmospheric
and orbital evolution generally used simple approximations of
dynamical processes to allow simulating the exoplanet popula-
tion as a whole (e.g., Kurokawa & Nakamoto 2014; Owen &
Lai 2018) or only accounted for migration in the early stages of
the planetary system when evaporation is considered dominant
(e.g., Jin et al. 2014; Jin & Mordasini 2018). Barnes et al. (2020)
recently developed a multi-purpose model that accounts for nu-
merous atmospheric (e.g., mass loss, climate of Earth-like plan-
ets) and dynamical (e.g., gravitation in multiple-planet systems,
tides, and galactic evolution) features. Yet their code lacks a
layer-by-layer thermodynamical structure integrator and cannot
simulate highly eccentric orbits, which prevents studying high-
eccentricity migration pathways, in particular the Kozai-Lidov
resonance.

With this necessity in mind, the JADE code combines an ac-
curate secular dynamical integrator, a fully coherent atmospheric
structure integrator, and XUV-driven photo-evaporation (Fig. 1).
To best capture the interplay between atmospheric and orbital
evolution, we devised a model coupling these processes from the
bottom up, rather than joining independent modules based on ex-
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isting dynamical and atmospheric models. We explicitly clarify
all the equations governing the JADE code, so that its features
are fully understandable and its results reproducible. The code
simulates the evolution of a planet around its host star, with the
possible addition of a second object on a distant orbit. We as-
sume that this outer companion, which can represent a planet,
a brown dwarf, or a star, does not feel the action of the inner
planet and of the star so that it only acts as a perturber. The at-
mospheric evolution of the inner planet is influenced by stellar
irradiation, which leads to mass loss via photo-evaporation, and
by the cooling of the planet’s core. The JADE code monitors the
secular evolution of the inner planet’s three dimensional (3D) or-
bital coordinates (in particular the angle between the stellar spin
axis and the normal to the orbital plane, which is an important
observational marker of migration), as well as its main atmo-
spheric properties (such as the mass and radius of the gaseous
envelope).

2.2. Orbital features

The dynamical mechanisms encoded in the JADE code are tidal
forces, the influence of the distant perturber (which can lead to
drastic changes over secular time scales, Mardling & Lin 2002;
Beust et al. 2012), and a post-Newtonian relativistic correction.
The inner and outer orbits are described with 3D coordinates
and can thus be initialized to classical coplanar orbits as well as
highly eccentric or mutually inclined orbits (a particularly im-
portant configuration for the Kozai resonance). Since the outer
companion is considered as a perturber, its orbit is fixed and only
the evolution of the inner orbit is calculated. We note that the
perturber can even be removed entirely from the simulation, so
that the code calculates the evolution of a single planet around
its star. Figure 2 illustrates a generic orbital configuration.

2.2.1. Orbital equations of motion

Hierarchical (Jacobi) coordinates are the preferred coordinating
system in our case. The principle of Jacobi coordinates is that the
orbit of the innermost planet is referred to the star and the orbit
of the second planet is referred to the center of mass of the star
and the innermost planet. The other possibility would have been
to adopt stellocentric coordinates, where all orbits are referred to
the star. However, the Jacobi system has the advantage that the
relative orbits are simply perturbed Keplerian orbits so that the
orbital elements are easy to calculate (Murray & Dermott 1999).
It was also shown by Beust (2003) that once it is expressed using
Jacobi coordinates, a hierarchical N-body system naturally splits
into a collection of independent Keplerian orbits with perturba-
tions that only depend on the planet positions, contrary to the use
of stellocentric coordinates. This ensures a better stability of the
numerical integrations. Figure 2 shows such coordinates for our
model. The referential in which all calculations are made is the
fixed rest frame of the observer: two unit vectors in the sky plane
î and ĵ and a vector along the line-of-sight k̂. The three vectors
in this order form a direct orthonormal basis. We globally adopt
the notation where v̂ is the unit vector in the direction of v.

In this context, the equation governing the relative motion of
the innermost pair is (Mardling & Lin 2002):

r̈ = −
G(Ms + Mpl)

r3 r +
∑

i

fi. (1)

Here, r is the vector linking the center of mass of the star to
the center of mass of the innermost planet (and r its norm), G

the gravitational constant, Ms the mass of the star, Mpl the mass
of the inner planet. The accelerations fi account for the perturba-
tions to the Keplerian orbit. They are due to the perturber fpert, the
tidal and spin distorsions of the star (resp. the innermost planet)
fs
SD (resp. fpl

SD), the tidal damping of the star (resp. the innermost
planet) fs

TD (resp. fpl
TD), and the relativistic potential of the binary

formed by the inner planet and the star frel. We recall their for-
mulation in Appendix A.1.

The spin rate of the star and the inner planet around them-
selves is subject to change due to the tidal forces. Assuming
solid-body rotations, the evolution of the spin vectors are given
by (Mardling & Lin 2002; Beust et al. 2012):

IsΩ̇s = −
MsMpl

Ms + Mpl
r × (fs

SD + fs
TD) (2)

IplΩ̇pl = −
MsMpl

Ms + Mpl
r × (fpl

SD + fpl
TD), (3)

where Is and Ipl are respectively the moment of inertia of the star
and the main planet.

It is possible to directly integrate over time Eqs. (1), (2) and
(3). This would fully characterize all the main planet’s orbital
elements by following the procedure outlined in Murray & Der-
mott (1999, p. 53). However, as these equations follow the evo-
lution of the position, velocity and acceleration vectors, the inte-
gration step is necessarily controlled by the inner orbital period.
Modeled planets can have periods in the range of only a few
days. Hence, simulating secular time scales (billion years) using
this approach and an integration step of a few days is inappropri-
ate because of the computation time.

2.2.2. Secularization

A common solution for this kind of problems is “secularization”.
It relies on two main steps: a change of coordinate system and an
averaging of the dynamical equations over the planetary orbits.
The change of frame consists in no longer integrating the posi-
tion r and velocity ṙ vectors. Instead, we follow the evolution
of two slow-varying vectors: the orbital angular momentum per
unit mass vector h, a vector normal to the orbital plane, and the
Runge-Lenz vector e, a vector in the direction of periastron with
magnitude equal to the orbital eccentricity (Murray & Dermott
1999; Mardling & Lin 2002; Beust et al. 2012). The expressions
of these vectors are given by:

h = r × ṙ, e =
ṙ × h

G(Ms + Mpl)
− r̂. (4)

This procedure is like assimilating a planet to a torus of mat-
ter equally scattered on its orbit which is characterized by the
two vectors h and e. The new equations of motion, which are
just the rate of change of h and e, become:

dh
dt

=
∑

i

r × fi (5)

de
dt

=

∑
i[2(fi · ṙ)r − (r · ṙ)fi − (fi · r)ṙ]

G(Ms + Mpl)
, (6)

where the different fi represent the forces listed above.
The set of differential equations that has to be integrated

(Eqs. 2, 3, 5 and 6) is then averaged over both orbital motions
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Fig. 1. Illustration of how the JADE code works. The central star and its spin-axis are in red. The stellar irradiation is represented in yellow. The
inner planet orbiting the star is in blue, as well as its spin-axis. Its orbit is represented in dotted blue lines. The dotted blue arrow is the normal to
the inner orbital plane. The spin-orbit angle ψ is highlighted in light blue. The distant perturber orbiting the star is represented in gray, as well as its
orbit in dotted lines. A zoom on the atmospheric structure of the inner planet is depicted in the right part of the figure. It is composed of a gaseous
envelope atop a rocky core. The orange arrows represent the radiogenic heating from the core and the light-purple ones account for atmospheric
evaporation. From top to bottom, the figure depicts the configuration of the system at two different secular time steps. Due to secular dynamical
processes, the shape of the inner orbit, as well as the stellar and planetary spin-axes, vary over time. The figure illustrates a typical case where the
inner orbit shrank, circularized, and changed inclination. Mass loss of the inner planet’s gaseous envelope under the influence of stellar irradiation
can lead to substantial changes in the planet’s mass and atmospheric structure. On the other hand, the outer orbit is considered immutable in the
present framework.

to remove the time dependency over their short periods. We note
that this way we neglect any effect due to a potential mean-
motion resonance between the two orbits. But the perturber is
assumed to orbit the star sufficiently further away than the inner
planet, so that the orbital period ratio is large enough to ensure
that no strong resonance will play a significant role. We point out
that for the sake of accuracy, we compute all the different force
contributions without neglecting any of them. We do not assume

a punctual planet or coplanar orbits as in Mardling & Lin (2002)
and we do not neglect the tidal forces acting on the star as in
Beust et al. (2012). The full details of the process of secular-
ization are explicitly provided in Appendices A.2 and A.3 and a
description of the numerical integrator can be found in Appendix
B.

Finally, the retrieval of the orbital parameters routinely-used
in exoplanet analyses is all the easier using h and e. In particular,
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Fig. 2. Illustration of the orbital configuration modeled by the JADE
code. A main planet orbits around a central star. There is also the pos-
sibility of adding a distant perturber orbiting around the same star. The
orbits are represented by the dotted lines. The vector r links the star to
the inner planet, while R links the center of mass of the star and the in-
ner planet to the distant perturber. They illustrate the hierarchical Jacobi
coordinates used in this kind of dynamical problem.

the eccentricity e, semi-major axis a, inclination with respect to
the sky-plane i, and 3D spin-orbit angle ψ of the inner orbit are
given by the following expressions:

e = ‖e‖ (7)

a =
‖h‖2

G(Ms + Mpl)(1 − e2)
(8)

cos i = k̂ · ĥ (9)

cosψ = Ω̂s · ĥ. (10)

The JADE code can thus monitor the evolution of ψ, which is
a crucial tracer of the dynamical evolution of a planetary system
(e.g., Bourrier et al. 2018b; Teyssandier et al. 2019). We note
that another strong added-value of the JADE code is accounting
for the stellar spin variations generated by planetary tides acting
on the star (e.g., Lai 2012; Rogers & Lin 2013; Xue et al. 2014).
Together with variations in the orbital inclination, they determine
entirely the true evolution of the spin-orbit angle.

The total angular momentum should be conserved. Its ex-
pression is (Mardling & Lin 2002):

J =
MsMpl

Ms + Mpl
h +

(Ms + Mpl)Mpert

Ms + Mpl + Mpert
H + IsΩs + IplΩpl. (11)

H = R × Ṙ is the angular momentum of the outer orbit. An-
alytically, J̇ should be 0 but if the calculation is done with the
above-mentioned contributions, one can see that there will be re-
maining non-null terms corresponding to fpert. These remaining
terms should be cancelled by the contribution from Ḣ, but we as-
sumed an invariant outer orbit. Nevertheless, the condition that
J remains constant is still satisfied if apert � a and if the per-
turber’s eccentricity epert is not too high (i.e., if on average the
inner planet does not come too close from the perturber). In this
case, which we assumed from the beginning, the outer orbit acts
like an “angular momentum reservoir”. In all cases, the JADE
code monitors the total angular momentum to check whether it
actually remains constant or not.
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Fig. 3. Secular evolution over 1 Gyr of the eccentricity (top) and semi-
major axis (bottom) of the test system with non-null radii. The assumed
parameters are: Ms = 1M�, Rs = 1R�, Mpl = 1MNept, and Rpl = 1RNept.
The initial values are: e = 0.5, a = 0.1 AU, i = 10◦, and ψ = 0◦.

2.2.3. Validation of the orbital model

The first obvious tests the JADE code had to pass were clas-
sical two-bodies tests without any relativistic correction. We
started by successfully checking that the orbital parameters do
not change regardless of the simulated system’s age in case of
a Keplerian orbit (i.e., a single punctual planet orbiting a punc-
tual star). Afterwards, we allowed for non-null radii, which only
triggers tidal effects. Following Beust et al. (2012), Fig. 3 shows
the result of simulating a Neptune around a Sun at a distance
of 0.1 AU for 1 Gyr. There is currently little knowledge about
the tidal dissipation factor Qpl that intervenes in the tidal contri-
butions of the equations of motion. Even in the giant planets of
the Solar System, Qpl is only known within one order of magni-
tude at best. Hence, we assume a constant Qpl for the inner planet
during a simulation, even though it could potentially change sub-
stantially with the evolution of the planet’s atmospheric structure
and bulk properties. We use a value of Qpl = 104 since the in-
ferred value of the tidal dissipation factor for Neptune is in the
range 9× 103 − 3.6× 104 (Zhang & Hamilton 2008). We assume
a constant tidal factor Qs for the star as well and use Qs = 105

as a typical value, consistently with observational data regard-
ing the circularization periods of binary stars (Barker & Ogilvie
2009). As expected, the eccentricity e and the semi-major axis
a drop as a result of tidal damping and circularization. Further-
more, the spin-orbit angle, initialized so that the stellar spin is
orthogonal to the orbital plane (Ωs ‖ ĥ), remains null. This is co-
herent with Lai (2012) who concluded that the stellar spin-axis
can only change direction due to tides generated by the planet
on the star if the system is not initially aligned. While the stellar
spin-axis can be brought to evolve because of the tides generated
by the planet, we note that the JADE code does not include for
now other processes leading to stellar rotational effects, such as
shear instabilities or the magnetic braking of the stellar surface.
Finally, the relative angular momentum error stays satisfactorily
very low < 10−14.

The JADE code was specifically designed with the inten-
tion of simulating hierarchical three-body systems. The study
of long-term stability in such systems has been thoroughly in-
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Fig. 4. Secular evolution over 3 Myr of the test system with non-null radii and a distant perturber. The assumed parameters are: Ms = 1M�,
Rs = 1R�, Mpl = 0.06Mjup, Rpl = 0.4Rjup, and Mpert = 1Mjup. The initial values are: e = 0.15, a = 0.3 AU, i = 0◦, and ψ = 0◦ for the main planet
and epert = 0.01, apert = 5 AU, and ipert = 75◦ for the perturber. Left: eccentricity (blue) and mutual inclination (red). Right: semi-major axis.

vestigated (e.g., Mazeh & Shaham 1979; Anosova 1986; Eggle-
ton & Kiseleva 1995; Kiseleva et al. 1998; Naoz et al. 2013).
In most cases, it requires that the perturber remains far enough
and with a low enough eccentricity so as not to approach the
inner orbit too much. However, even such weak perturbations
can have important secular effects on the inner orbit when the
inner and the outer orbits are not aligned (Eggleton & Kiseleva-
Eggleton 2001; Fabrycky & Tremaine 2007; Beust et al. 2012;
Bourrier et al. 2018b). Under some circumstances, a perturber
can generate Kozai-Lidov oscillations. It is a dynamical mecha-
nism affecting the orbit of a binary system (star + inner planet)
perturbed by a distant third body causing a periodic exchange be-
tween the inner orbit’s eccentricity and inclination over secular
time scales (Kozai 1962; Lidov 1962). In a three-body system,
the orbit-averaged equations of motion for the inner planet have
a conserved quantity thanks to axial symmetry: the component
of the planet’s orbital angular momentum parallel to the angu-
lar momentum of the star (Merritt 2013). It can be expressed in
terms of the eccentricity and the mutual inclination (difference
between the inner planet’s and the perturber’s inclinations):

Lz =
√

1 − e2 cos imut. (12)

The mutual inclination is directly calculated in the JADE
code as the angle between the inner and the outer orbits
cos imut = ĥ · Ĥ. Lz being constant means that eccentricity can be
traded for inclination: near-circular, highly inclined orbits can
become very eccentric. The Kozai mechanism regime is only
valid for small values of Lz (Beust et al. 2012), that is to say
high initial mutual inclinations. It can be shown analytically (Ki-
noshita & Nakai 1999) that the minimum inclination required for
Kozai mechanism to start is the following:

imut > arccos
√

3/5 ' 39.2◦. (13)

However, this is true only for near-zero initial values of the
eccentricity. Kozai mechanism can operate at smaller inclination
if the initial eccentricity is larger; and at some point in the secular
evolution, it will reach an inclination above this threshold.

In order to validate the JADE code regarding the Kozai
mechanism, we simulate a Mpl = 0.06Mjup, Rpl = 0.4Rjup Nep-
tune around the Sun at a = 0.3 AU and with an eccentricity
e = 0.15, perturbed by a distant Jupiter at apert = 5 AU with a
low eccentricity epert = 0.01. Here, the lines of nodes of the two
orbits are equal so that the mutual inclination is unambiguously

related to the two individual inclinations imut = |i− ipert|. In a first
test, the inner and outer orbits are set aligned. As expected, this
configuration fails to start the resonance: the eccentricity, semi-
major axis and inclination remain constant over the simulated
3 Myr. We then set imut = 75◦ to check that Kozai cycles are
triggered when the condition in Eq. (13) is met. As can be seen
in Fig. 4, the eccentricity and inclination of the inner orbit in-
deed show the expected oscillations in the opposite direction to
each other. So as to maintain Lz constant, increases in eccentric-
ity (low values of

√
1 − e2) must be compensated by decreases

in inclination (high values of cos imut). We notice that the reso-
nance drives an initially weakly eccentric orbit to values of high
eccentricity. Kozai cycles also induce a particular stair-shaped
pattern in the variations of the semi-major axis. During the high
eccentricity phases, tidal effects are stronger as the planet spends
more time close to the star at the periastron, resulting in abrupt
drops of the separation. Finally, the relative angular momentum
error satisfyingly does not exceed ' 10−6.

A final test is related to the characteristic time scale of Kozai
oscillations (Kiseleva et al. 1998; Merritt 2013):

τKozai =
2P2

pert

3πP
Ms + Mpl + Mpert

Mpert
(1 − e2

pert)
3/2, (14)

where Ppert and P are respectively the orbital periods of
the perturber and the inner planet, derived from Kepler’s third
law. Mpert = 1Mjup is the perturber’s mass. Equation (14) gives
τKozai = 1.68×105 yr for our test simulation, which is reasonably
close to the value of the oscillation period considering that this
formula is accurate within a factor on the order of unity (Beust
& Dutrey 2006).

2.3. Atmospheric features

The novelty of the JADE code compared to integrators that im-
plement three-body exoplanetary dynamics is having the possi-
bility of modeling an evolving planetary atmosphere. The inner
planet’s structure consists in a rocky core of mass Mcore and a
gaseous envelope of mass Menv, so that the total planetary mass is
Mpl = Mcore + Menv. The planetary radius Rpl is self-consistently
integrated so as to be compatible with the planet’s composition.
The total mass and radius are the ones involved in the dynam-
ical processes (i.e., used to solve the motion equations). Any
change in the atmospheric structure of the simulated planet will
thus have an impact on its dynamical evolution.
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Fig. 5. Illustration of the atmospheric structure of the main planet, as
modeled by the JADE code. The planet corresponds to the rocky core
plus the envelope, which consists in Zone A and Zone B. The XUV
radius is above the optical radius and corresponds to the radius up to
which the gas is lifted from Zone A so as to escape.

2.3.1. Integration of the atmospheric structure

The JADE code determines the radius of the optical photosphere
Rpl with a similar approach as Lopez & Fortney (2013); Jin et al.
(2014). We consider a gaseous envelope dominated by hydrogen
and helium, characterized by its time-dependent mass Menv(t)
and constant helium mass fraction YHe, on top of a rocky core
of a certain composition and with a certain constant mass Mcore.
At well-chosen time steps of the simulation, the structure of the
planet, set by the thermodynamical properties of the H/He mix-
ture and the composition of the core, is fully integrated. This
approach allows us to account for the evolution of the planet
mass and radius with more accuracy than simple analytical re-
lations (e.g., Barnes et al. 2020). We separate the envelope into
the upper layers, where most of the optical and infrared stellar
irradiation is absorbed (Zone A), and the lower layers, which
are opaque to the stellar flux (Zone B). Including the rocky
core, there are thus three separate regions that are integrated by
the JADE code. Throughout the simulation, the atmosphere can
evolve under photo-evaporative mass loss (driven by the stellar
irradiation) and changes in the thermal structure (driven by stel-
lar irradiation and the intrinsic planetary luminosity). Figure 5
illustrates the planetary structure.

We solve the atmospheric structure by assuming spherical
symmetry and combining the one-dimensional hydrostatic equa-
tions (Broeg 2009; Mordasini et al. 2012; Jin et al. 2014):

dm
dr

= 4πr2ρ (15)

dP
dr

= −
Gm
r2 ρ (16)

dτ
dr

= −κthρ, (17)

where r is the radius as measured from the planetary cen-
ter, m is the cumulative mass inside r, ρ is the density in each
elementary spherical shell, P the pressure, τ the radially inte-
grated optical depth from the center of the planet in thermal
wavelengths and κth the thermal opacity. We interpolate κth from

the Ferguson et al. (2005) Rosseland-mean opacity tables2 at the
helium fraction of the atmosphere, the temperature, and the den-
sity of each elementary layer. ρ in the atmosphere is determined
using the equation of state of Saumon et al. (1995) for a H/He
gas for the temperature T and the pressure P of each elementary
layer. See Appendix C for more details.

The atmospheric temperature profile depends on both the op-
tical depth and heat transfer mechanism (convective or radia-
tive). In Zone A, we adopt the globally averaged temperature
profile in the semi-gray model of Guillot (2010), derived using
the Eddington approximation:

T 4 =
3T 4

int

4

{
2
3

+ τ

}
+

3T 4
eq

4

{
2
3

+
2

3γ

[
1 +

(
γτ

2
− 1

)
e−γτ

]
+

2γ
3

(
1 −

τ2

2

)
E2(γτ)

}
. (18)

Here, γ = κv/κth is the ratio of the visible opacity to the
thermal opacity. E2(γτ) is the exponential integral En(z) ≡∫ ∞

1 t−ne−ztdt. Tint and Teq are respectively the intrinsic temper-
ature that characterizes the heat flux from the rocky core and
the equilibrium temperature obtained from a balance with inci-
dent stellar energy. Their expressions are the following (Chan-
drasekhar 1939; Guillot 2005; Jin et al. 2014):

Tint =

 Lpl

4πσBR2
pl

1/4

, Teq =

(
Lbol

16πσB
√

1 − e2a2

)1/4

, (19)

where Lbol represents the stellar bolometric luminosity and
σB the Stefan-Boltzmann constant. The two temperatures are de-
rived from a black-body law. The JADE code interpolates the
value of γ from the tabulated values of Jin et al. (2014) as a
function of the equilibrium temperature. Note the

√
1 − e2 fac-

tor in the expression of Teq resulting from the secularization of
the bolometric flux (Appendix A.2).

In Zone B, the temperature gradient only depends on the heat
transfer mechanism (Broeg 2009; Mordasini et al. 2012):

dT
dr

=
T
P

dP
dr

min (∇rad,∇conv) , (20)

where ∇rad is the radiative gradient and ∇conv is the convec-
tive gradient. Here, the Schwarzschild criterion (Schwarzschild
1958) is used to decide whether the energy transport occurs via
radiative diffusion or convection. Any layer in which the gradient
needed to transport the entire energy by radiation is larger than
the convective gradient is considered convectively unstable (i.e.,
spontaneously generates convection cells) and the temperature
gradient is set to ∇conv. On the contrary, if ∇rad < ∇conv, the gas
is convectively stable and we assume that the layer is entirely ra-
diative. There is no convection and radiation mix within a same
elementary layer (zero-entropy gradient hypothesis). In practice,
the radiative gradient grows quickly with high pressures and ∇rad
is chosen only for a thin layer in the upper part of Zone B. The
radiative gradient is given by (Mihalas & Weibel-Mihalas 2013;
Jin et al. 2014)

∇rad =
3κthLplP

64πσBGmT 4 , (21)

2 “Caffau et al. 2011” from https://www.wichita.edu/
academics/fairmount_college_of_liberal_arts_and_
sciences/physics/Research/opacity.php
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while the convective gradient ∇conv is calculated using the
equation of state of Saumon et al. (1995) for a H/He gas knowing
T and P. See Appendix C for more details.

The integration of the rocky core is carryed out using Eqs.
(15) and (16). The density profile is described by a polytropic
equation of state that is temperature-independent. The core’s
density is given as a function of the pressure by (Seager et al.
2007)

ρ(P) = ρ0 + cPn, (22)

where the parameters ρ0, c and n depend on the core’s com-
position. This prescription used for the core is too simple to effi-
ciently account for the detailed structure of rocky planets but is
satisfactory for the interiors of Neptunes. A future version will
extend the code to mini-Neptunes and smaller planets with a bet-
ter description of the core and a greater variety of envelope com-
positions.

We assume that the luminosity of the planet is homogeneous
(Mordasini et al. 2012; Jin et al. 2014). Although this assumption
is not self-consistent with our layer-based model, it is valid at
first order given that Lpl is concretely only used in a small region
of the planetary atmosphere (Zone A and a thin upper layer in
Zone B). Still, its value varies with time and is updated at each
time step. We use the biquadratic fit in the core’s and envelope’s
mass derived by Mordasini (2020).

Lpl

Ljup
= a0 + b1

(
Mcore

MEarth

)
+ b2

(
Mcore

MEarth

)2

+ c1

(
Menv

MEarth

)
+

c2

(
Menv

MEarth

)2

. (23)

a0, b1, b2, c1, and c2 depend on time and are interpolated
from the tabulated values of Mordasini (2020). The calculated
Lpl includes the cooling and contraction of both the core and the
envelope, as well as the radiogenic heat released in the interior
of the planet due to the radioactive decay of the core. We use Eq.
(23) as a reasonable approximation because of the low depen-
dence of Rpl on the planetary luminosity. Even though the Menv
grid in Mordasini (2020) does not extend to Jupiter-mass plan-
ets, they showed that Eq. (23) yields acceptable values of Lpl for
this class of planets. We will refine the calculation of Lpl in fu-
ture versions of the JADE code to simulate more accurately a
wider range of planets. The role of internal luminosity, in partic-
ular when accouting for additional sources such as ohmic dissi-
pation (Pu & Valencia 2017) or processes such as core-powered
mass loss (Ginzburg et al. 2018), could be particularly critical
for small planets and the formation of the radius valley (Fulton
et al. 2017).

The integration of the planetary profiles is made from the top
of the atmosphere to the center of the planet. We assume a certain
planetary radius at the top boundary Rhyp

pl and stop the integration
when we reach the center (r = 0). The JADE code runs a grid of
models over a range of assumed radii Rhyp

pl and retains the value
of the radius that gives the closest calculated mass at the center
Mcalc

0 to zero (see Appendix B for more details).
For Zone A, integration starts with m = Mpl, P = 1 mbar,

τ = 2/3, and r = Rhyp
pl . The initial value of T is directly cal-

culated using Eq. (18). The initial value of τ is the one usually
taken to define a planetary radius when the planet is gaseous
(e.g., Jin et al. 2014; Lopez 2017). The initial value of P is a

standard value for the atmospheric pressure at such optical depth
(Jin et al. 2014) and we checked that the results of the simula-
tions are largely insensitive to the initial value of P, indepen-
dently of the envelope and core masses. The boundary between
Zone A and Zone B should be at the optical depth in visible
wavelengths. In other words, the optical depth should then sat-
isfy τ � 1/(

√
3γ) (Rogers et al. 2011) based on the definition of

γ in Eq. (18). Hence, we set the limit between Zone A and Zone
B at τ = 100/(

√
3γ) (Jin et al. 2014).

2.3.2. Photo-evaporation

Close-in planets can lose a substantial fraction of their mass
due to hydrodynamical escape induced by the high-energy in-
put from the star (Vidal-Madjar et al. 2003; Lammer et al. 2003;
Lecavelier des Etangs 2007). To simulate this process, one must
determine the atmospheric mass-loss rate over the course of the
planet life.

Various approaches have been used in the exoplanet litera-
ture to calculate mass-loss rates from atmospheric simulations,
independently of observations (as to the opposite case, see e.g.,
Bourrier & Lecavelier des Etangs 2013; Kislyakova et al. 2014).
One possibility consists in self-consistently simulating the full
structure of the expanding upper atmosphere (e.g., Salz et al.
2015, 2016a), but it represents an impractical solution over long
time scales. A complementary approach relies on pre-calculating
a grid of upper atmosphere models to then interpolate the mass-
loss rate at the desired planetary and stellar parameters (e.g.,
Kubyshkina et al. 2018b). However, this solution requires per-
forming heavy preliminary simulations over a wide range of pa-
rameter space and is not as accurate as a direct calculation of
the atmospheric structure. In the JADE code, we chose the more
standard approach used in planetary evolution models, which
consists in calculating mass-loss rates from an analytical formula
based on the energy-limited escape (e.g., Watson et al. 1981;
Lammer et al. 2003; Lecavelier des Etangs et al. 2004; Erkaev
et al. 2007; Jin et al. 2014; Salz et al. 2016b; Lopez 2017). In this
regime, the XUV photosphere (i.e., the layer where the planet
becomes optically thin to ionizing photons) undergoes photo-
evaporation due to strong X-rays and UV stellar irradiation and
the mass-loss rate reads

Ṁenv = ε
LXUV

4πd2

S XUV

Φ0Ktide
, (24)

where LXUV is the radiative energy input (X-ray and extreme
UV stellar flux) and S XUV = πR2

XUV is the cross-section surface
that collects the high-energy irradiation, where RXUV is the XUV
radius (i.e., the radius where most of the XUV flux is absorbed).
Furthermore, Φ0 = GMpl/Rpl is the gravitational potential of the
planet, where the planetary radius Rpl is defined as the optical
photosphere radius and Ktide is a correction factor accounting for
atmospheric loss enhancement due to the action of tidal forces
because the planetary Roche lobe can be close to the planet’s
surface (Erkaev et al. 2007). Its expression is given by :

Ktide = 1 −
3
2ξ

+
1

2ξ3 (25)

ξ =
RRoche

Rpl
=

(
Mpl

3Ms

)1/3 a
Rpl

(
1 +

e2

2

)
. (26)
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To account for the effect of a noncircular orbit, Eq. (26) uses
the average orbital distance (Guo 2010) instead of the semi-
major axis alone (Erkaev et al. 2007). Φ0Ktide comes into play
in Eq. (24) because it represents the gravitational potential dif-
ference between the planetary radius and the Roche-lobe radius
for a planet affected by stellar tidal forces (Erkaev et al. 2007).
We calculate this potential using the optical radius Rpl (as, e.g.,
Watson et al. 1981; Lammer et al. 2003; Erkaev et al. 2007; Salz
et al. 2016b; Kubyshkina et al. 2018a) rather than the XUV ra-
dius (as, e.g., Baraffe et al. 2004; Lopez et al. 2012; Kurokawa &
Nakamoto 2014; Lopez 2017) to account for the energy required
to lift material from Rpl to RXUV (Salz et al. 2016b).

In contrast to Barnes et al. (2020), we differentiate between
Rpl and RXUV, which can otherwise lead to relatively high inac-
curacies in the derived mass-loss rate (Salz et al. 2016b). The
most direct way to define the XUV radius at first order is to add
a characteristic height to the planetary radius (e.g., Lopez 2017).
In the JADE code though, we chose to define the XUV radius
via a more accurate analytical relation (Salz et al. 2016b):

log10(RXUV/Rpl) = max(0.0,
− 0.185 log10(GMpl/Rpl) + 0.021 log10(FXUV) + 2.42), (27)

where RXUV depends on the gravitational potential of the
planet and the stellar XUV flux FXUV (all the quantities are in
CGS). ε in Eq. (24) is the efficiency of photo-evaporation (frac-
tion of the energy input that is available for atmospheric heating).
It is usually taken to be between 0.1 and 0.2 (e.g., Jackson et al.
2010; Valencia et al. 2010; Lopez et al. 2012; Shematovich et al.
2014; Jin et al. 2014; Salz et al. 2016a; Lopez 2017). In order to
be consistent with our definition of RXUV, we chose to define ε
by using the analytical formula of Salz et al. (2016b):

log10 ε =

{
−0.50 − 0.44(v − 12.00) if v 6 13.11,
−0.98 − 7.29(v − 13.11) if v > 13.11,

(28)

where v = log10(GMpl/Rpl). Equations (27) and (28) were
derived from self-consistent simulations of upper atmospheric
structures over a large range of stellar irradiations, planetary
masses, and optical radii. Using these equations allows us to
cover a wider range of evaporation regimes (e.g., recombination-
limited, X- or EUV-driven) than in the naive energy-limited ap-
proach.

Finally, d in Eq. (24) is the planet-star distance. As this quan-
tity varies over one orbit, we averaged Eq. (24) over the in-
ner orbital period in order to make it compatible with the dy-
namical secular equations (Appendix A.2). This step is crucial
since it ensures one of the novelties of the JADE code: coupling
the possible complex dynamical evolution of the system with
photo-evaporation. The secularized mass-loss rate after all pos-
sible simplifications is then:〈
Ṁenv

〉
= ε

LXUVRplR2
XUV

4GMplKtide
√

1 − e2a2
. (29)

One possible caveat is the assumption that the atmosphere
reacts instantly to variations in the incoming stellar flux. It has
been suggested, for example, that stellar flares have a limited
impact on mass loss due to the delayed response of the upper at-
mosphere to the sharp and short increase in flux (Chadney et al.
2017; Bisikalo et al. 2018). In the present framework, the incom-
ing flux can vary rapidly in the vicinity of the periastron during
high-eccentricity phases, but such variations remain more grad-
ual than a stellar flare.

2.3.3. Evolution of the stellar luminosity

The stellar luminosity is an important quantity in our model. It
intervenes several times in the equations governing the planet’s
atmospheric structure and thus its evolution. We separate this
luminosity into 3 main spectral bands: bolometric Lbol, X-rays
LX, and extreme ultra-violet LEUV. Lbol is used to determine the
equilibrium temperature of the planet, while the XUV luminosity
LXUV = LX + LEUV is the cornerstone of the atmospheric mass-
loss equation.

The preferred solution we implemented in the JADE code is
to provide time-tabulated luminosities, which are then interpo-
lated at each time step. This approach allows to directly use the
results of relevant stellar simulations. In the event those tables
cannot be provided, one can use the analytic expressions imple-
mented in the JADE code. In this case, the bolometric luminosity
stays constant in time, as its variation is usually negligible com-
pared to the variation of the X and EUV luminosities (as with
the Sun, Guinan & Engle 2009). We derive LX from Lbol using
the model of Jackson et al. (2012), in which the ratio LX/Lbol
evolves in two stages: a first phase where it remains constant
and a second one, when the star is older than a saturation age,
where it drops as a decreasing power-law (Jackson et al. 2012):

LX/Lbol =

{
(LX/Lbol)sat if t 6 τsat,

(LX/Lbol)sat(t/τsat)−α if t > τsat,
(30)

where (LX)sat, τsat, and α are constant parameters that can be
imposed or automatically set to the average values from Jackson
et al. (2012). Finally, we derive LEUV directly from LX using a
single power-law (King et al. 2018):

LEUV/LX = α
( LX

4πa2

)γ
, (31)

where α and γ are constant parameters set to the values given
by King et al. (2018) for a boundary at 100 Å between X-ray and
EUV.

2.3.4. Validation of the atmospheric model

Two different validations have to be conducted. The first one is
related to the static part, that is to say the atmospheric structure
integration (Sect. 2.3.1). The second one is related to the evolu-
tive part (photo-evaporation, Sect. 2.3.2).

So as to validate the JADE code’s atmospheric structure in-
tegration, we sought to recover the radius of Neptune in the solar
system from its known parameters: a = 30 AU, YHe = 0.2 (Hub-
bard et al. 1995), and Menv/Mpl = 0.15 (Nettelmann et al. 2013;
Frelikh & Murray-Clay 2017). We use Lbol = 1L�. LXUV and
Lpl are automatically computed using the procedure presented in
the previous sections. We successfully find Rpl = 0.370Rjup '

1.05Rnept after 5 Gyr. The present mass, radius, temperature, and
optical depth profiles as a function of pressure are plotted in Fig.
6. These profiles show the expected behaviors. The deeper parts
of the envelope are much hotter and more compressed than the
surface. The shape of the T − P profile corresponds to what is
seen in literature (e.g., Fortney et al. 2008; Mordasini et al. 2012;
Jin et al. 2014). Particularly, the small change of the temperature
in Zone A is due to the nongray effects. The slope variation of
the temperature in Zone B is due to the transition from a radia-
tive to a convective regime. The integration correctly stops at the
right value of τ in Zone A and of m in Zone B.
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Fig. 6. Profiles for the test simulation of Neptune as a function of log P. The blue curves correspond to Zone A, the orange curves correspond to
Zone B, and the black curves to the rocky core. The parameters of the simulation are: a = 30 AU, Mcore = 0.85Mpl, Mpl = 1Mnept, Lbol = 1L�, and
YHe = 0.2. Top left: cumulative mass of the planet. Top right: radius of the planet. Bottom left: temperature. Bottom right: optical depth in thermal
wavelengths.
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Fig. 7. Secular evolution of the test system over 100 Myr. The only
active mechanism is photo-evaporation. The parameters of the simula-
tion are: Mpl = 1Mnept, Mcore = 0.95Mpl, Lbol = 1L�, YHe = 0.2, and
a = 0.05 AU. There is no perturber in this simulation. The envelope
has completely evaporated at the end of the simulation. Top: envelope’s
mass. Bottom: planetary radius.

To test photo-evaporation’s effect, we simulated the atmo-
spheric mass loss of a Mpl = 0.054Mjup ' 1Mnept Neptune
with 5% of gaseous envelope. We set the value of a to 0.05
AU (orbital period of about 10 days) to better see the effect of
photo-evaporation. All the dynamical features are switched off,

photo-evaporation is the only active mechanism. The results are
presented in Fig. 7. The envelope has been completely stripped
away in approximately 100 Myr, mass and radius dropping until
they reach the rocky core.

3. Application to the GJ436 system

The GJ436 system is a prime candidate to test the JADE code.
The M-dwarf star is known to host a transiting close-in Neptune-
mass planet, GJ436 b (Butler et al. 2004; Gillon et al. 2007),
which has been the subject of growing interest in recent years.
The monitoring of its transits coupled to RV measurements con-
strained its bulk and orbital parameters. GJ436 b has a signifi-
cant nonzero eccentricity, e = 0.14 ± 0.01, despite a small or-
bital period, P ' 2.64 days (Lanotte et al. 2014), which should
have led tidal forces to circularize the orbit a long time ago. Sev-
eral theories were proposed to solve this riddling case. The most
straightforward one is the possible weakness of tidal forces (e.g.,
Mardling 2008). However, this argument is mainly related to our
poor knowledge of the tidal dissipation factor Qpl, which needs
to be set at 10 times the upper-bound estimate for a Neptune to
explain the eccentricity of GJ436 b. Among the other possible
scenarios, Beust et al. (2012) proposed an explanation to its high
eccentricity based on a Kozai resonance induced by a distant
perturber. This scenario is supported by Bourrier et al. (2018b),
as it can explain both their measurement of GJ436 b misaligned
orbit (λ ' 72◦) and its high eccentricity. These authors further
suggested that this mechanism could explain the strong atmo-
spheric escape of GJ436 b (Ehrenreich et al. 2015; Lavie et al.
2017) despite its presence at the fringes of the desert more than 4
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Fig. 8. Secular evolution of the GJ436 system. The simulation was performed including only the dynamical features. See text for initial conditions.
Top left: eccentricity on a long time scale of 8 Gyr where the two-part behavior is clear. Top right: eccentricity on an intermediate time scale of
50 Myr where the Kozai-Lidov oscillations are apparent. Bottom left: semi-major axis on secular time scale. Bottom right: 3D spin-orbit angle on
secular time scale.

Gyr after the planet’s formation, as evaporation would have been
triggered by its late Kozai migration.

While Bourrier et al. (2018b) were able to explain the ob-
served orbital architecture of GJ436 b with simulations of Kozai
migration, they did not couple the dynamical evolution of the
system with the evaporation of the planet. The interest of study-
ing this coupling is enhanced by the possibility to constrain the
coupled evolution with measurements of both the planet’s orbital
architecture and its mass-loss rate (Bourrier et al. 2015, 2016).
This is where the added value of the JADE code comes into play.

3.1. Pure Kozai migration

As the secular evolution of GJ436 under Kozai resonance has
already been investigated, it can be used to benchmark the dy-
namical part of the JADE code. As pointed out by Beust et al.
(2012) and Bourrier et al. (2018b), its orbit should already have
been circularized assuming Qpl = 105 and the current age of
the system (4 - 8 Gyr, Bourrier et al. 2018b). But the perturbing
effect of the companion delays the circularization. The stellar
parameters are Ms = 0.445M� and Rs = 0.449R� (Mann et al.
2015). We assume the presence of a distant perturber, GJ436 c,
with the following properties: Mpert = 0.1Mjup, apert = 5.8 AU,
and epert = 0.03 to ensure a Kozai resonance compatible with
the age of the system (see Fig. 4 of Bourrier et al. 2018b). We
carry out a purely dynamical simulation (the atmospheric struc-
ture and evolution are not considered) including tides, general
relativity, and the action of the perturber. The bulk properties of
GJ436 b do not evolve over time and are set to Mpl = 0.0799Mjup
and Rpl = 0.374Rjup (Bourrier et al. 2018b). If GJ436 b had mi-
grated early-on to its present location, tides and relativistic ef-

fects would have been strong enough to inhibit all Kozai cycles
(Beust et al. 2012). As in Beust et al. (2012); Bourrier et al.
(2018b), we assume GJ436 b formed about ten times further
(a = 0.35 AU) than its current orbit (a = 0.0308 AU, Lan-
otte et al. 2014) and set imut = 85◦ so as to generate a strong
Kozai resonance. The initial inner eccentricity is set close to zero
(e = 0.01) and an initially null spin-orbit angle is assumed. It
should be noted that we do not address the origin of the high
initial mutual inclinations we use. Three-body disk-driven reso-
nance (Petrovich et al. 2020) provides interesting leads on this
issue. While this mechanism does not explain the residual ec-
centricities of billion-year-old close-in planets and the orbital
architectures of the most massive planets, it could explain how
Neptune-mass and smaller planets acquire eccentric orbits, in-
clined with respect to their companion and misaligned at the end
of the disk phase.

The results are illustrated in Fig. 8 on two different time
scales. The second subplot presents an intermediate time scale
of 50 Myr to showcase the Kozai-Lidov eccentricity oscillations.
Equation (14) yields a characteristic Kozai period of τKozai = 1.4
Myr, in rough agreement with Fig. 8. The other subplots high-
light the dynamical evolution on a secular time scale of 8 Gyr
that is comparable to the age of the system. A clear two-part
behavior is observed. The first phase shows very fast Kozai os-
cillations compared to the time scale on which the simulation is
performed. This resonance is wrapped by an envelope that sub-
stantially shrinks over time. The first phase comes to an end af-
ter a characteristic transition time scale τtrans (a bit higher than
5 Gyr) when the bottom eccentricity of this envelope reaches
the same value as the top eccentricity. After that, during the sec-
ond phase of the evolution, the planet undergoes tidal damping
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Fig. 9. Secular evolution of the GJ436 system. The simulation was performed including both dynamical features and an atmospheric structure.
Photo-evaporation is active. See text for initial conditions. Top left: eccentricity as a function of time. Top right: mass of the envelope as a function
of time. Bottom left: semi-major axis as a function of time. Bottom right: planetary radius as a function of time.

as the orbit gets gradually circularized, which translates into the
sharp decrease in the semi-major axis and slower decrease in
the eccentricity. Moreover, the spin-orbit angle widely oscillates
during the first phase and comes out of resonance with a high
value, which later continues to weakly oscillate during the sec-
ond phase. Hence, even if the orbit was initially aligned, a strong
Kozai resonance can substantially tilt it, providing a possible ori-
gin for the high measured obliquity today.

We thus satisfyingly find the same results as Beust et al.
(2012); Bourrier et al. (2018b), which validate our dynamical
integrator and confirm Kozai cycles as a possible explanation to
GJ436 b misaligned and eccentric orbit. By making the planet
form ten times further than its current position, it spends several
Gyr in the Kozai resonance and emerges with a high obliquity
and eccentricity, recently enough that its orbit would not have
circularized yet.

3.2. Kozai migration and evaporating atmosphere

In this section, we carry out the same simulation of GJ436 b as
in Sect. 3.1 but we now account for the presence of an evapo-
rating atmosphere. To perform this, we consider that 10% of the
planet’s mass is made up of a H/He atmosphere characterized by
a YHe = 0.2 helium fraction, similarly to Neptune. The temporal
evolution of the stellar bolometric and XUV luminosities is dic-
tated by tabular values that were derived using dedicated stellar
simulations of GJ436 and that will be detailed in a follow-up pa-
per. All the features contributing to the planetary internal energy
(Sect. 2.3.1) are taken into account.

The results are presented in Fig. 9. The same two-part behav-
ior of the Kozai resonance remains unaltered, but remarkably the
transition occurs several billion years earlier than when consid-
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Fig. 10. Top: evolution of the planetary radius during the first 50 Myr.
Bottom: evolution of the semi-major axis during the first 50 Myr. The
blue lines represent the simulation where Lbol is averaged over the inner
orbit, as opposed to the orange lines where it is not.

ering dynamical features alone (τtrans ' 0.6 vs 5 Gyr). This is
because the atmosphere of the planet, now taken into account
in the simulation, has a strong coupling with tides. The plane-
tary radius decreases over time due to the cooling of its rocky
core steeply after the planet formation and then progressively
following the secular attenuation of the stellar bolometric lumi-
nosity. On top of this global decrease, eccentricity variations due
to the Kozai resonance induce high-frequency radius variations
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Fig. 11. Secular evolution of the GJ436 system. The simulation was performed including both dynamical features and an atmospheric structure.
Photo-evaporation is inactive (orange). The same simulation where photo-evaporation is turned on is showed in blue for comparison. Left: planetary
radius. Right: eccentricity of the inner orbit.
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Fig. 12. Evolution of the mass-loss rate of the H/He envelope of GJ436
b (blue) compared to the evolution of the XUV luminosity of GJ436
(red).

because of the secularization of the stellar bolometric flux (i.e.,
averaged over the inner orbit, see Eq. 19). During the high ec-
centricity phases, the planet spends on average more time close
to the periastron. The atmosphere therefore gets much more irra-
diated by the star, its radius swells and pulsates with each Kozai
cycle. The net effect of secularizing the bolometric flux is illus-
trated in Fig. 10, which highlights the feedback of dynamical
processes on the atmospheric structure. Conversely, modeling
the planetary atmosphere also has an important feedback on the
dynamical evolution of the system, because the planetary radius
is overall larger than in the pure dynamical case. In our frame-
work, this is due to the combination of the higher internal lu-
minosity and the stronger intrinsic stellar luminosity during the
early phases of the planetary evolution, in addition to the Kozai
resonance that generates the radius pulsations. According to the
simplified dynamical formalism we adopted for tides, this results
in a shorter tidal-damping time scale (proportional to Mpl/R5

pl,
e.g., Goldreich & Soter 1966; Jackson et al. 2008), a faster de-
cline of the semi-major axis (Fig. 10), and a faster thinning of
the eccentricity envelope that makes the planet leave the reso-
nance earlier. The planet radius then steeply increases after the
transition, as the gaseous atmosphere suddenly heats up due to
the sharp drop in semi-major axis (Fig. 9). Again, this change in
atmospheric structure induced by the dynamical evolution feed-
backs on the planet orbit, as the inflated radius accelerates the

circularization compared to the pure dynamical case (∼ 1 vs 3
Gyr after the transition).

As the structure of the planetary atmosphere is also affected
by photo-evaporation, we ran the same simulation with this pro-
cess cut-off to evaluate its net impact on the planetary evolution.
Figure 11 shows that the envelope of the radius and eccentricity
variations is nearly unchanged during the first phase. The mass-
loss rate shows the same oscillations as the eccentricity during
the Kozai resonance (Fig. 12), which is a signature of the stellar
XUV flux secularization (see Eq. 29) and a clear feedback of the
dynamical processes on photo-evaporation. However, while the
mass-loss rate is large during the first hundred millions years,
it steadily decreases over the first phase as a result of the at-
tenuation of the intrinsic stellar XUV luminosity. The decrease
in envelope mass (∼ 1.3%) due to evaporation during the first
phase thus appears too small to compensate for the increased
tidal damping due to the inflated radius. However, the increase
in XUV irradiation following the sharp drop in semi-major axis
after the transition pumps the atmospheric mass-loss rate back
to levels comparable to the planet’s early life (Fig. 12). Evap-
oration has a noticeable impact on the atmospheric structure in
the second phase, decreasing the envelope mass by about 21.5%
in the Gyr following the transition. As a result, the planet radius
also decreases by about 9% more than the sole effect of the de-
clining stellar irradiation and inner luminosity (Fig. 11). This is
an important result, as it shows how the atmospheric evolution
of close-in planets that undergo Kozai migration can still be af-
fected by evaporation billions of years after their formation. We
emphasize that the simulated present-day orbit of GJ436 b does
not match its observed properties anymore, as was the case in
a pure dynamical simulation starting from the chosen set of ini-
tial properties. This highlights the need to simulate the coupled
atmospheric and dynamical evolution of GJ436 b, and of close-
in planets in general, to get back more accurately to the original
properties of their planetary systems. Such a coupled exploration
will be performed for GJ436 b with the JADE code in a follow-
up study.

4. Conclusion

If the hot Neptunes desert is now a well-known feature of close-
in planets, its underlying formation mechanisms remain a vast
puzzle. Unveiling the mystery of its origin requires investigating
a wide panel of evolutionary processes. Being designed to sim-
ulate the secular evolution of a specific planetary system over a
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wide range of planet and star properties, the JADE code takes us
one step closer to this deep exploration.

The JADE code implements the dynamical features encoded
in previous models such as tidal forces, general relativity, and
the perturbing action of a distant companion (e.g., Eggleton
& Kiseleva-Eggleton 2001; Fabrycky & Tremaine 2007; Beust
et al. 2012). The perturbing Hamiltonian is truncated up to the
hexadecapole (4th order), which is, as far as we know, the highest
truncation order that has been used in dynamical models. This
extreme precision allows our model to properly manage com-
plex Kozai-Lidov resonances during secular periods of time. The
main novelty of the JADE code is that the dynamical evolution of
the planet accounts for the presence of an atmosphere. The code
coherently integrates the detailed thermodynamical structure of
the atmosphere and makes it change over secular periods, as the
planet dynamically evolves and is subjected to various levels of
stellar irradiation. Our intention with this paper has been to rig-
orously describe all the equations so that the model can be easily
understandable and reproducible.

We applied the JADE code to GJ436 b, representative of the
warm giants forming the border of the hot Neptunes desert. Dur-
ing Kozai resonance, there is a strong interaction between the
dynamical and atmospheric evolution of the planet, the eccen-
tricity cycles causing the atmosphere to pulsate and conversely
the inflated atmosphere strengthening tidal effects. This leads
the planet to leave the resonance, migrate, and circularize its or-
bit several billion years earlier compared to a purely dynamical
simulation. While we confirm the conclusion by Bourrier et al.
(2018b) that Kozai migration can explain the eccentric and mis-
aligned orbit of GJ436 b, their results for the original proper-
ties of the planet and its outer companion thus need to be re-
vised considering the effect of GJ436 b’s atmosphere. Further-
more, we found that photo-evaporation alters the bulk structure
of GJ436 b after it gets out of the Kozai resonance, as it mi-
grates close to the star and receives increased levels of stellar
irradiation. Kozai resonance can thus delay migration and trig-
ger strong atmospheric mass loss several billion years after a
planet formation, especially as recent work suggests that the to-
tal combined X-ray and EUX stellar emission occurs mostly af-
ter the saturated phase (King & Wheatley 2021). This changes
our view of atmospheric evolution for close-in planets, which
are generally thought to lose their atmosphere within the first 10
- 100 Myr after their formation and migration within the proto-
planetary disk. Our study thus shows that there can be a strong
coupling between the secular dynamical and atmospheric evolu-
tion of close-in exoplanets, supporting the idea that this interplay
might be essential in shaping a fraction of their population. We
will address this question with the JADE code by exploring the
possible histories of a representative set of close-in planets on ec-
centric, misaligned orbits, which could have underwent delayed
evaporation following Kozai migration.

Constraining the detailed simulations of the JADE code with
measurements of orbital and atmospheric properties directly
linked to high-eccentricity migration (e.g., the spin-orbit angle)
and photo-evaporation (e.g., the mass loss rate) will allow us to
disentangle further these processes. This is a complementary ap-
proach to syntheses of the whole planet population based on ap-
proximated evolutionary processes and constrained by the bulk
planetary properties alone (e.g., Jin et al. 2014; Owen & Lai
2018). Eventually, combining global population synthesis and
highly-detailed simulations of specific systems offers the best
chance to understand the roles of long-term atmospheric and
dynamical evolution in shaping the different classes of close-in
planets around the desert and determine their possible filiation.
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Appendix A: Orbit averaging and equations of
motion derivation

Appendix A.1: Perturbing forces to the Keplerian equation of
motion

The paradigm used to determine the equations of motion is a
perturbative approach to the Keplerian acceleration. The explicit
expressions of the forces thus involved in Eq. (1) are the follow-
ing. First, the acceleration due to the third body reads

fpert = GMpert

(
rpert−pl

‖rpert−pl‖3
−

rpert−s

‖rpert−s‖3

)
, (A.1)

where rpert−pl is the vector linking the perturber to the inner
planet and rpert−s is the vector linking the perturber to the star.
Mpert is the perturber’s mass.

Then, the acceleration due to the quadrupole moment of the
star, composed of its spin distortion as well as the tidal distortion
produced by the inner planet, is formulated as

fs
SD =

R5
s (1 + Mpl/Ms)ks

r4

{ [
5(Ωs · r̂)2 −Ω2

s −
6GMpl

r3

]
r̂

− 2(Ωs · r̂)Ωs

}
, (A.2)

where ks is the apsidal motion constant of the star, Ωs its spin
rate, and Ωs its norm. Note that Eq. (A.2) should contain a 6
factor, instead of the 12 factor found in Mardling & Lin (2002);
Beust et al. (2012). We are thankful to R.A. Mardling (private
communication) for pointing this out.

Furthermore, the acceleration produced by the tidal damping
of the star also contributes to the total force:

fs
TD = −

6nks

Qs

Mpl

Ms

(Rs

a

)5 (a
r

)8
×[3(r̂· ṙ)r̂+(r̂× ṙ−rΩs) × r̂], (A.3)

where a is the semi-major axis of the inner orbit, n = 2π/P the
mean motion of the mutual orbit of the star and the inner planet
(P being the orbital period of the inner orbit), and Qs the stellar
tidal dissipation factor.

Similar expressions for the inner planet as in Eqs. (A.2) and
(A.3): fpl

SD and fpl
TD have also to be taken into account and are

obtained by switching the “s” indices by “pl” indices and vice-
versa. The fSD forces account for the fact that the geometry of
the star and the planet are distorted by their spin and by tides. As
pointed out by Eggleton et al. (1998); Mardling & Lin (2002),
their secular effect is to produce an apsidal advance. The fTD
forces on the other hand generate the circularization process.

Finally, one must include the acceleration due to the post-
Newtonian potential of the inner planet-star binary:

frel = −
G(Ms + Mpl)

r2c2

{[
(1 + 3η)ṙ · ṙ − 2(2 + η)

G(Ms + Mpl)
r

−
3
2
ηṙ2

]
r̂ − 2(2 − η)ṙṙ

}
, (A.4)

where η = MsMpl/(Ms + Mpl)2, c the speed of light, and ṙ the
norm of ṙ. As for the fSD forces, the relativistic potential pro-
duces an apsidal advance (Mardling & Lin 2002; Beust et al.
2012).

We do not use Eq. (1) to make orbital quantities evolve over
time. Instead, the previous forces are injected in Eqs. (5) and (6)
before being orbit-averaged.

Appendix A.2: Orbit averaging

In order to consider the secular system’s evolution, one key step
is averaging the time-evolving equations over the planetary or-
bits. Equations (2), (3), (5), and (6) depend on the planet-star
distances r and R (Fig. 2) which are very rapidly varying quan-
tities. Averaging over the inner orbit allows us to get rid of the
r dependency, while averaging over the outer orbit allows us to
suppress the R dependency. To perform this averaging, a conve-
nient change of variable is to use the “true anomaly” θ instead
of the time t as an integration variable (Eggleton et al. 1998;
Mardling & Lin 2002). For this purpose, it is helpful to use these
parametric forms (Eggleton et al. 1998):

r = r (cos θ ê + sin θ q̂) (A.5)

r =
a(1 − e2)

1 + e cos θ
(A.6)

ṙ =
na

√
1 − e2

[
− sin θ ê + (cos θ + e) q̂

]
(A.7)

ṙ =
nae sin θ
√

1 − e2
, (A.8)

where q̂ ≡ ĥ × ê. These equations are particularly useful be-
cause of the convenience of the comoving (ê, q̂, ĥ) orthonormal
frame to express the h and e equations of motion (Eqs. 5 and 6),
on the one hand, and because θ shows to be a good integration
variable if the function contains a substantial negative power of
r, on the other hand, which is always the case practically. One
last formula is needed to perform the change of variable (Eggle-
ton et al. 1998):

ndt =
(
1 − e2

)3/2 dθ
(1 + e cos θ)2 . (A.9)

We present here an example of such an averaging. If one
wants to secularize the photo-evaporative mass-loss rate (Eq. 24)
for instance, the quantity to be averaged is 1/r2:

〈
1
r2

〉
=

1
P

∫ P

0

dt
r2

=

∫ 2π

0

(1 + e cos θ)2

a2(1 − e2)2

(1 − e2)3/2

2π
dθ

(1 + e cos θ)2

=
1

a
√

1 − e2
. (A.10)

We used here the orbital period P = 2π/n and Eqs. (A.6) and
(A.9). Equation (A.10) explains then the final secularized form
of the mass-loss rate in Eq. (29).
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Appendix A.3: Equations of motion secularization

So as to obtain the secular dynamical equations of motion, each
of the forces in Eqs. (A.1) - (A.4) has to be transformed into a
contribution to ḣ and ė according to Eqs. (5) and (6). Afterwards,
these contributions are averaged using the procedure described
in Appendix A.2.

For the averaging of the perturber’s force (Eq. A.1), a con-
venient way to proceed is to expand its expression in ascending
powers of the ratio a/apert using Legendre polynomials (Ford
et al. 2000; Mardling & Lin 2002). By assuming this ratio to be
small, the force is truncated to some order. Afterwards, it is av-
eraged over the inner then the outer orbit. Eggleton & Kiseleva-
Eggleton (2001); Fabrycky & Tremaine (2007) did the trun-
cation up to the second order (quadrupolar), while Ford et al.
(2000); Mardling & Lin (2002) used the third order (octupolar).
Beust et al. (2012) recommended fourth order (hexadecapolar) to
maintain high accuracy, especially on secular time scales. This
is why we adopted a fourth-order truncation for the JADE code.
To the best of our knowledge, this is the first time that the third
and fourth order are explicitly described in the frame of secular
three-body exoplanetary dynamics.

The decomposition of the force induced by the perturber is
given by

fpert =
GMpert

R

∞∑
l=2

Ml−1
pl − (−Ms)l−1(
Ms + Mpl

)l−1 ∇r

[( r
R

)l
Pl

(
r̂ · R̂

)]
, (A.11)

where the Pl are the ascending Legendre polynomials. Equa-
tion (A.11) is then truncated to 4th order in r/R.

It is convenient to define x = r · R̂ to express the different
orders (Mardling & Lin 2002). The quadrupole force (2nd order)
is found by taking the l = 2 contribution in Eq. (A.11) and using
the appropriate Legendre polynomial P2(Φ) = (3Φ2 − 1)/2:

fpert,2 =
GMpert

R3

(
3xR̂ − r

)
. (A.12)

The octupole (3rd order) is found by taking the l = 3 con-
tribution and using the following Legendre polynomial P3(Φ) =
(5Φ3 − 3Φ)/2:

fpert,3 =
GMpert

R4

Mpl − Ms

Ms + Mpl

[
3
2

(
5x2 − r2

)
R̂ − 3xr

]
. (A.13)

Finally, using the l = 4 contribution and P4(Φ) = (35Φ4 −

30Φ2 + 3)/8 gives the hexadecapole (4th order):

fpert,4 =
GMpert

R5

M3
s + M3

pl(
Ms + Mpl

)3

[
5
2

(
7x2 − 3r2

)
xR̂ −

3
2

(
5x2 − r2

)
r
]
.

(A.14)

The contributions to ḣ and ė related to Eqs. (A.12) - (A.14)
are averaged over the inner orbit using Eqs. (A.5) - (A.9). This
eliminates the dependency on r. In order to perform the averag-
ing over the outer orbit, one can define similar parametric forms
using the outer true anomaly θpert:

R̂ = cos θpert Ê + sin θpert Q̂ (A.15)

R =
apert(1 − e2

pert)

1 + epert cos θpert
(A.16)

npertdt =
(
1 − e2

pert

)3/2 dθpert(
1 + epert cos θpert

)2 . (A.17)

We define here a direct orthonormal frame (Ê, Q̂, Ĥ) for the
outer orbit as well. The projection coefficients between the two
frames are Êx ≡ Ê · x̂, Q̂x ≡ Q̂ · x̂, and Ĥx ≡ Ĥ · x̂, where x̂
is either ê, q̂, or ĥ. With Eqs. (A.15) - (A.17), one can average
the 3 contributions to the perturber’s force over the outer orbit
to remove the dependency on R̂ and R. We note that we derived
a useful formula which allows very welcome simplifications in
the calculation of the averaged perturber’s force. It is related to
the orthonormality of the two bases (Ê, Q̂, Ĥ) and (ê, q̂, ĥ). Its
expression is the following:

ÊxÊy + Q̂xQ̂y + ĤxĤy = δxy, (A.18)

where x and y are either e, q, or h, and δxy is the Kronecker
delta.

Tidal and relativistic terms (Eqs. A.2 - A.4) only have to be
averaged over the inner orbit since they do not depend on the
outer orbit. Mardling & Lin (2002) gave explicit expressions for
the averaged equations, which are consistent with our results.

At this level of complexity, numerical computing is required
to derived the many averaged equations, which is why we made
use of Mathematica (Wolfram Research Inc. 2019). The final
secularized equations of motion can be written as

〈〈
dh
dt

〉〉
=

〈〈
dpert,2

〉〉
+

〈〈
dpert,3

〉〉
+

〈〈
dpert,4

〉〉
(A.19)

+
〈
ds

SD

〉
+

〈
dpl

SD

〉
+

〈
ds

TD

〉
+

〈
dpl

TD

〉
〈〈

de
dt

〉〉
=

〈〈
gpert,2

〉〉
+

〈〈
gpert,3

〉〉
+

〈〈
gpert,4

〉〉
(A.20)

+
〈
gs

SD

〉
+

〈
gpl

SD

〉
+

〈
gs

TD

〉
+

〈
gpl

TD

〉
+

〈
grel

〉

Is

〈〈
dΩs

dt

〉〉
= −

MsMpl

Ms + Mpl

(〈
ds

SD

〉
+

〈
ds

TD

〉)
(A.21)

Ipl

〈〈
dΩpl

dt

〉〉
= −

MsMpl

Ms + Mpl

(〈
dpl

SD

〉
+

〈
dpl

TD

〉)
. (A.22)

The different contributions are as follows. First, the
quadrupolar contribution of the force due to the third body reads

〈〈
dpert,2

〉〉
=

3GMperta2

4a3
pert(1 − e2

pert)3/2

{
− (1 − e2)ĤqĤhê (A.23)

+ (1 + 4e2)ĤeĤhq̂ − 5e2ĤeĤqĥ
}
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〈〈
gpert,2

〉〉
=

3nMperta3e
√

1 − e2

4(Ms + Mpl)a3
pert(1 − e2

pert)3/2

{
5ĤeĤqê (A.24)

+ (−3 + 5Ĥ2
q + 4Ĥ2

h)q̂ + ĤqĤhĥ
}
.

The octupolar contribution of the force due to the third body
is

〈〈
dpert,3

〉〉
=

15GMpert(Ms − Mpl)a3eepert

64(Ms + Mpl)a4
pert(1 − e2

pert)5/2
(A.25){

αeê + αqq̂ + αhĥ
}

〈〈
gpert,3

〉〉
=

15nMpert(Ms − Mpl)a4
√

1 − e2epert

64(Ms + Mpl)2a4
pert(1 − e2

pert)5/2
(A.26){

βeê + βqq̂ + βhĥ
}
.

We only present here the prefactors to maintain readability.
The coefficients αx and βx are expressed explicitly in Table A.1.

The hexadecapolar contribution of the force due to the third
body is

〈〈
dpert,4

〉〉
=

45GMpert(M3
s + M3

pl)a
4

256(Ms + Mpl)3a5
pert(1 − e2

pert)7/2
(A.27){

γeê + γqq̂ + γhĥ
}

〈〈
gpert,4

〉〉
=

45nMpert(M3
s + M3

pl)a
5e
√

1 − e2

256(Ms + Mpl)4a5
pert(1 − e2

pert)7/2
(A.28){

δeê + δqq̂ + δhĥ
}
.

The coefficients γx and δx can be found in Table A.1 as well.
Then, the averaging of the spin distortion of the star can be

expressed as

〈
ds

SD

〉
=

ks(1 + Mpl/Ms)R5
s

a3(1 − e2)3/2

{
−Ωs,qΩs,hê + Ωs,eΩs,hq̂

}
(A.29)

〈
gs

SD

〉
=

nksR5
s e

GMsa2(1 − e2)2

{[15
8

8 + 12e2 + e4

(1 − e2)3

GMpl

a3 (A.30)

−
1
2

(Ω2
s,e + Ω2

s,q − 2Ω2
s,h)

]
q̂ + Ωs,qΩs,hĥ

}
.

Here, Ωs,x ≡ Ωs · x̂ where x̂ is either ê, q̂, or ĥ.
Furthermore, the tidal damping of the star contribution is

now formulated as

〈
ds

TD

〉
=

3nksMplR5
s

8QsMsa3(1 − e2)9/2

{
(8 + 12e2 + e4)Ωs,eê (A.31)

+ (8 + 36e2 + 5e4)Ωs,qq̂ −
[16 + 5e2(24 + 18e2 + e4)

(1 − e2)3/2 n

− 2(8 + 3e2(8 + e2))Ωs,h

]
ĥ
}

〈
gs

TD

〉
=

3n2ksR5
s e

8QsGMs(1 + Ms/Mpl)a2(1 − e2)5 (A.32){[
−

9
4

64 + 5e2(48 + 24e2 + e4)
(1 − e2)3/2 n

+ 11(8 + 12e2 + e4)Ωs,h

]
ê − (8 + 12e2 + e4)Ωs,eĥ

}
.

Similar expressions for the main planet as in Eqs. (A.29) -
(A.32) also have to be taken into account and are obtained by
switching the “s” indices by “pl” indices and vice-versa.

Finally, the averaged post-Newtonian contribution is

〈
grel

〉
=

3a2n3e
c2(1 − e2)

q̂. (A.33)

Appendix B: Numerical integration

Two distinct numerical integrators are implemented in the JADE
code. The first one temporally solves the secular equations of
motion, while the second one spatially integrates the atmo-
spheric structure in order to determine the planetary radius.

Equations (A.19) - (A.22) are time-integrated by the JADE
code on secular time scales using a fifth-order Runge-Kutta
scheme with an adaptive time step. The equations of motion in-
tegrator relies on the Dormand-Prince method and takes advan-
tage of a “just-in-time” compilation and a C-based execution to
greatly speed up computation time. In this way, a secular dynam-
ical integration over 10 Gyr does not last more than a few hours.
The stability of the integrator is first guaranteed by the dimen-
sionless units used in the code. This makes all quantities close to
unity and ensures that the time step control is consistent with the
evolution of all the parameters at once. In addition, the relative
and absolute tolerance of the integrator are respectively set to
10−6 and 10−12, which ensures a small-enough time step to cor-
rectly match the complex involved dynamics. By doing so, Kozai
oscillations do not change if a stricter tolerance is imposed, and
angular momentum relative errors are satisfyingly always lower
than ∼ 10−6.

The integration of the 1D atmospheric equations is also per-
formed using a fifth-order Runge-Kutta scheme with an adaptive
step. Dimensionless units are again adopted and the same toler-
ances as for the dynamical integrator are consistently used. For
each radius determination procedure, a parallelized grid of atmo-
spheric integrations is performed. The JADE code then retains
the planetary radius which yields a mass at the center sufficiently
close to zero: M(r = 0) < 10−3 ×Mcore. This threshold value has
been chosen such that the derived radius no longer varies if a
more constraining value is imposed. This determination of Rpl is

Article number, page 18 of 20



O. Attia et al.: The JADE code.

Table A.1. Coefficients involved in the expression of the octupolar and hexadecapolar contributions of the perturber’s force.

Coefficient Expression

αe 10
(
1 − e2

) [
Q̂e

(
ÊhQ̂q + ÊqQ̂h

)
+ Êe

(
3ÊqÊh + Q̂qQ̂h

)]
αq −

[
Êh

(
−1 + 8e2 +

(
45 + 60e2

)
Ĥ2

h − 5
(
2 + 5e2

)
Q̂2

q

)
+ 5

(
2 + 5e2

)
Êq

(
3ĤqĤh + Q̂qQ̂h

)]
αh

[
−10

(
1 + 6e2

)
ÊhQ̂qQ̂h + Êq

(
−11 + 15Ĥ2

h + 10Q̂2
h + 3e2

(
−29 + 35Ĥ2

q + 30Ĥ2
h + 20Q̂2

h

))]
βe

[
10

(
1 + 6e2

)
ÊhQ̂qQ̂h − Êq

(
−11 + 15Ĥ2

h + 10Q̂2
h + 3e2

(
−29 + 35Ĥ2

q + 30Ĥ2
h + 20Q̂2

h

))]
βq

[(
−10 + 30e2

)
ÊhQ̂eQ̂h + Êe

(
−11 + 15Ĥ2

h + 10Q̂2
h + 3e2

(
−17 + 35Ĥ2

q + 20Ĥ2
h − 10Q̂2

h

))]
βh 10e2

[
Q̂e

(
ÊhQ̂q + ÊqQ̂h

)
+ Êe

(
3ÊqÊh + Q̂qQ̂h

)]

γe

(
1 − e2

)[
98e2e2

pertĤ
2
q Q̂qQ̂h + ĤhĤq

(
e2

(
e2

pert

(
210Ĥ2

h + 98Q̂2
q + 84Q̂2

h − 221
)

+ 84Ĥ2
h − 78

)
+e2

pert

(
35Ĥ2

h + 14Q̂2
h − 17

)
+ 14Ĥ2

h − 6
)

+ 2e2
pertQ̂qQ̂h

((
42e2 + 7

)
Ĥ2

h − 13e2 − 1
)

+ 49e2
(
5e2

pert + 2
)
ĤhĤ3

q

]
γq −

[
Ĥe

(
98e2

(
2e2 + 1

)
e2

pertĤhQ̂2
q + 98e2

(
2e2 + 1

)
e2

pertĤqQ̂qQ̂h + 49e2
(
2e2 + 1

)(
5e2

pert + 2
)
Ĥ2

q Ĥh

+14
(
22e4 + 19e2 + 1

)
e2

pertĤhQ̂2
h + 7

(
8e4 + 12e2 + 1

)(
5e2

pert + 2
)
Ĥ3

h − Ĥh

(
76e4 + 86e2

+
(
346e4 + 309e2 + 17

)
e2

pert + 6
))
− 2e2

pertQ̂eQ̂h

(
− 20e4 − 2e2 + 7

(
6e4 − 5e2 − 1

)
Ĥ2

h + 1
)]

γh −7e2
[
2e2

pertQ̂e

((
7 − 7e2

)
ĤqĤhQ̂h +

(
e2 + 2

)
Q̂q

)
+ Ĥe

(
Ĥq

(
e2

(
e2

pert

(
70Ĥ2

h + 84Q̂2
q + 42Q̂2

h − 95
)

+ 28Ĥ2
h − 22

)
+7

(
5e2

pert + 2
)
Ĥ2

h − e2
pert − 2

)
+ 14

(
2e2 + 1

)
e2

pertĤhQ̂qQ̂h + 21e2
(
5e2

pert + 2
)
Ĥ3

q

)]

δe 7
[
2e2

pertQ̂e

((
7 − 7e2

)
ĤqĤhQ̂h +

(
e2 + 2

)
Q̂q

)
+ Ĥe

(
Ĥq

(
e2

(
e2

pert

(
70Ĥ2

h + 84Q̂2
q + 42Q̂2

h − 95
)

+ 28Ĥ2
h − 22

)
+7

(
5e2

pert + 2
)
Ĥ2

h − e2
pert − 2

)
+ 14

(
2e2 + 1

)
e2

pertĤhQ̂qQ̂h + 21e2
(
5e2

pert + 2
)
Ĥ3

q

)]
δq −

[
588e2e2

pertĤ
2
q Q̂2

q + 196
(
4e2 + 1

)
e2

pertĤhĤqQ̂qQ̂h + 56
(
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2
h Q̂2

h + 147e2
(
5e2

pert + 2
)
Ĥ4
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2
q Q̂qQ̂h + ĤhĤq
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]

computationally expensive, and it is thus evaluated with a time
step that accounts for the main processes governing its evolution:

τeval = ηmin
(
τevap, τKozai

)
, (B.1)

where τevap = |Menv/Ṁenv| is the characteristic photo-
evaporation time scale, τKozai is the characteristic time scale of
Kozai oscillations (Eq. 14) that induce radius pulsations, and η
is a safety factor (typically set to 10−2). We note that τeval is re-
evaluated every time Rpl is calculated. One can see in Figs. 7 and
9 that this approach allows the evolution of the envelope to be
smoothly determined.

Appendix C: Hydrogen/helium equations of state

Saumon et al. (1995) provided useful equations of state (EOS)
for hydrogen and helium. They appear in the form of tables of
values where each row gives the values of thermodynamical pa-
rameters in a physical configuration. Hence, given the values of
the two independent parameters T and P, one can interpolate
the value of a thermodynamical parameter such as ρ or ∇conv.
However, the EOS are given as two independent tables (one for
hydrogen and one for helium). If we want to mix both, we have
to correctly combine the derived values for hydrogen alone and
for helium alone using the mass fraction of helium YHe.

The first thermodynamical quantity interpolated by the JADE
code is the density ρ. The density can be seen as an inverse spe-
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cific volume, which is an extensive quantity. Thus, one has to
combine the interpolated value for hydrogen alone ρH and for
helium alone ρHe in the following way (Saumon et al. 1995):

1
ρ(P,T )

=
1 − YHe

ρH(P,T )
+

YHe

ρHe(P,T )
. (C.1)

The second thermodynamical quantity interpolated by the
JADE code is the convective gradient ∇conv. However, its value
for a H/He mix cannot be calculated using the additive-volume
rule. It has to be calculated from its definition:

∇conv =
∂ log T
∂ log P

∣∣∣∣∣∣
S

= −
S P

S T
. (C.2)

Here, S T and S P are respectively the partial derivatives of the
entropy’s logarithm log S with respect to log T and log P. Their
mixed expression can be calculated from the following expres-
sions (Saumon et al. 1995):

S T = (1 − YHe)
S

S H S H
T + YHe

S
S He S He

T +
S mix

S
∂ log S mix

∂ log T

∣∣∣∣∣∣
P

(C.3)

S P = (1 − YHe)
S

S H S H
P + YHe

S
S He S He

P +
S mix

S
∂ log S mix

∂ log P

∣∣∣∣∣∣
T
. (C.4)

The total entropy is calculated using the additive rule, as it
is an extensive quantity: S = (1 − YHe)S H + YHeS He. Finally, the
mixing entropy S mix can be calculated as follows (Saumon et al.
1995):

S mix

kB
=

1 − YHe

mH

2(
1 + XH + 3XH2

){ ln(1 + βγ) − XH
e ln(1 + δ)

+ βγ
[
ln(1 + 1/βγ) − XHe

e ln(1 + 1/δ)
] }
. (C.5)

kB is the Boltzmann constant. The concentrations Xi are read
from the tables. The β, γ and δ coefficients are given by (Saumon
et al. 1995; Broeg 2009):

β =
mH

mHe

YHe

1 − YHe
(C.6)

γ =
3
2

(
1 + XH + 3XH2

)
(1 + 2XHe + XHe+ )

(C.7)

δ =
2
3

(2 − 2XHe − XHe+ )(
1 − XH2 − XH

) βγ. (C.8)

The partial derivatives of the mixing entropy are numerically
computed.

Article number, page 20 of 20


	1
	2 Description of the JADE code
	2.1 General description
	2.2 Orbital features
	2.2.1 Orbital equations of motion
	2.2.2 Secularization
	2.2.3 Validation of the orbital model

	2.3 Atmospheric features
	2.3.1 Integration of the atmospheric structure
	2.3.2 Photo-evaporation
	2.3.3 Evolution of the stellar luminosity
	2.3.4 Validation of the atmospheric model


	3 Application to the GJ436 system
	3.1 Pure Kozai migration
	3.2 Kozai migration and evaporating atmosphere

	4 Conclusion
	A Orbit averaging and equations of motion derivation
	A.1 Perturbing forces to the Keplerian equation of motion
	A.2 Orbit averaging
	A.3 Equations of motion secularization

	B Numerical integration
	C Hydrogen/helium equations of state

