6,086 research outputs found
The volumetric rate of calcium-rich transients in the local universe
We present a measurement of the volumetric rate of `calcium-rich' optical
transients in the local universe, using a sample of three events from the
Palomar Transient Factory (PTF). This measurement builds on a detailed study of
the PTF transient detection efficiencies, and uses a Monte Carlo simulation of
the PTF survey. We measure the volumetric rate of calcium-rich transients to be
higher than previous estimates: events
yr Mpc. This is equivalent to 33-94% of the local volumetric type
Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce
the observed calcium abundances in galaxy clusters, assuming an asymptotic
calcium yield per calcium-rich event of ~0.05. We also
study the PTF detection efficiency of these transients as a function of
position within their candidate host galaxies. We confirm as a real physical
effect previous results that suggest calcium-rich transients prefer large
physical offsets from their host galaxies.Comment: Accepted for publication in ApJ. 9 pages, 5 figure
Evidence for a Spectroscopic Sequence Among SNe Ia
In this Letter we present evidence for a spectral sequence among Type Ia
supernovae (SNe Ia). The sequence is based on the systematic variation of
several features seen in the near-maximum light spectrum. This sequence is
analogous to the recently noted photometric sequence among SNe Ia which shows a
relationship between the peak brightness of a SN Ia and the shape of its light
curve. In addition to the observational evidence we present a partial
theoretical explanation for the sequence. This has been achieved by producing a
series of non-LTE synthetic spectra in which only the effective temperature is
varied. The synthetic sequence nicely reproduces most of the differences seen
in the observed one and presumably corresponds to the amount of 56Ni produced
in the explosion.Comment: To appear in Astrophysical Journal Letters, uuencoded, gzipped
postscript file, also available from http://www.nhn.uoknor.edu/~baron
Diversity of Decline-Rate-Corrected Type Ia Supernova Rise Times: One Mode or Two?
B-band light-curve rise times for eight unusually well-observed nearby Type
Ia supernovae (SNe) are fitted by a newly developed template-building
algorithm, using light-curve functions that are smooth, flexible, and free of
potential bias from externally derived templates and other prior assumptions.
From the available literature, photometric BVRI data collected over many
months, including the earliest points, are reconciled, combined, and fitted to
a unique time of explosion for each SN. On average, after they are corrected
for light-curve decline rate, three SNe rise in 18.81 +- 0.36 days, while five
SNe rise in 16.64 +- 0.21 days. If all eight SNe are sampled from a single
parent population (a hypothesis not favored by statistical tests), the rms
intrinsic scatter of the decline-rate-corrected SN rise time is 0.96 +0.52
-0.25 days -- a first measurement of this dispersion. The corresponding global
mean rise time is 17.44 +- 0.39 days, where the uncertainty is dominated by
intrinsic variance. This value is ~2 days shorter than two published averages
that nominally are twice as precise, though also based on small samples. When
comparing high-z to low-z SN luminosities for determining cosmological
parameters, bias can be introduced by use of a light-curve template with an
unrealistic rise time. If the period over which light curves are sampled
depends on z in a manner typical of current search and measurement strategies,
a two-day discrepancy in template rise time can bias the luminosity comparison
by ~0.03 magnitudes.Comment: As accepted by The Astrophysical Journal; 15 pages, 6 figures, 2
tables. Explanatory material rearranged and enhanced; Fig. 4 reformatte
The Risetime of Nearby Type Ia Supernovae
We present calibrated photometric measurements of the earliest detections of
nearby type Ia supernovae (SNe Ia). The set of ~30 new, unfiltered CCD
observations delineate the early rise behavior of SNe Ia > 18 to 10 days before
maximum. Using simple empirical models, we demonstrate the strong correlation
between the risetime (i.e., the time between explosion and maximum), the
post-rise light-curve shape, and the peak luminosity. Using a variety of
light-curve shape methods, we find the risetime to B maximum for a SN Ia with
Delta m15(B)=1.1 mag and peak M_V=-19.45 mag to be 19.5+/-0.2 days. We find
that the peak brightness of SNe Ia is correlated with their risetime; SNe Ia
which are 0.10 mag brighter at peak in the B-band require 0.80+/-0.05 days
longer to reach maximum light.
We determine the effects of several possible sources of systematic errors,
but none of these significantly impacts the inferred risetime. Constraints on
SN Ia progenitor systems and explosion models are derived from a comparison
between the observed and theoretical predictions of the risetime.Comment: Submitted to the Astronomical Journal, 24 pages, 7 figure
Spectral Models for Early Time SN 2011fe Observations
We use observed UV through near IR spectra to examine whether SN 2011fe can
be understood in the framework of Branch-normal SNe Ia and to examine its
individual peculiarities. As a benchmark, we use a delayed-detonation model
with a progenitor metallicity of Z_solar/20. We study the sensitivity of
features to variations in progenitor metallicity, the outer density profile,
and the distribution of radioactive nickel. The effect of metallicity
variations in the progenitor have a relatively small effect on the synthetic
spectra. We also find that the abundance stratification of SN 2011fe resembles
closely that of a delayed detonation model with a transition density that has
been fit to other Branch-normal Type Ia supernovae. At early times, the model
photosphere is formed in material with velocities that are too high, indicating
that the photosphere recedes too slowly or that SN 2011fe has a lower specific
energy in the outer ~0.1 M_sun than does the model. We discuss several
explanations for the discrepancies. Finally, we examine variations in both the
spectral energy distribution and in the colors due to variations in the
progenitor metallicity, which suggests that colors are only weak indicators for
the progenitor metallicity, in the particular explosion model that we have
studied. We do find that the flux in the U band is significantly higher at
maximum light in the solar metallicity model than in the lower metallicity
model and the lower metallicity model much better matches the observed
spectrum.Comment: 9 pages, 14 figures, MNRAS, in press, fixed typ
The Rising Light Curves of Type Ia Supernovae
We present an analysis of the early, rising light curves of 18 Type Ia
supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF) and the
La Silla-QUEST variability survey (LSQ). We fit these early data flux using a
simple power-law to determine the time of first
light , and hence the rise-time from first light to
peak luminosity, and the exponent of the power-law rise (). We find a mean
uncorrected rise time of days, with individual SN rise-times
ranging from to days. The exponent n shows significant
departures from the simple 'fireball model' of (or ) usually assumed in the literature. With a mean value of , our data also show significant diversity from event to event. This
deviation has implications for the distribution of 56Ni throughout the SN
ejecta, with a higher index suggesting a lesser degree of 56Ni mixing. The
range of n found also confirms that the 56Ni distribution is not standard
throughout the population of SNe Ia, in agreement with earlier work measuring
such abundances through spectral modelling. We also show that the duration of
the very early light curve, before the luminosity has reached half of its
maximal value, does not correlate with the light curve shape or stretch used to
standardise SNe Ia in cosmological applications. This has implications for the
cosmological fitting of SN Ia light curves.Comment: 19 pages, 19 figures, accepted for publication in MNRA
Time-dependent radiative transfer with PHOENIX
Aims. We present first results and tests of a time-dependent extension to the
general purpose model atmosphere code PHOENIX. We aim to produce light curves
and spectra of hydro models for all types of supernovae. Methods. We extend our
model atmosphere code PHOENIX to solve time-dependent non-grey, NLTE, radiative
transfer in a special relativistic framework. A simple hydrodynamics solver was
implemented to keep track of the energy conservation of the atmosphere during
free expansion. Results. The correct operation of the new additions to PHOENIX
were verified in test calculations. Conclusions. We have shown the correct
operation of our extension to time-dependent radiative transfer and will be
able to calculate supernova light curves and spectra in future work.Comment: 7 pages, 12 figure
The Earliest Near-infrared Time-series Spectroscopy of a Type Ia Supernova
We present ten medium-resolution, high signal-to-noise ratio near-infrared
(NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility
(IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained
as part of the Carnegie Supernova Project. This data set constitutes the
earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the
first spectrum obtained at 2.58 days past the explosion and covering -14.6 to
+17.3 days relative to B-band maximum. C I {\lambda}1.0693 {\mu}m is detected
in SN 2011fe with increasing strength up to maximum light. The delay in the
onset of the NIR C I line demonstrates its potential to be an effective tracer
of unprocessed material. For the first time in a SN Ia, the early rapid decline
of the Mg II {\lambda}1.0927 {\mu}m velocity was observed, and the subsequent
velocity is remarkably constant. The Mg II velocity during this constant phase
locates the inner edge of carbon burning and probes the conditions under which
the transition from deflagration to detonation occurs. We show that the Mg II
velocity does not correlate with the optical light-curve decline rate
{\Delta}m15. The prominent break at ~1.5 {\mu}m is the main source of concern
for NIR k-correction calculations. We demonstrate here that the feature has a
uniform time evolution among SNe Ia, with the flux ratio across the break
strongly correlated with {\Delta}m15. The predictability of the strength and
the onset of this feature suggests that the associated k-correction
uncertainties can be minimized with improved spectral templates.Comment: 14 pages, 13 figures, accepted for publication in Ap
- …