1,219 research outputs found

    A Wien Filter Energy Loss Spectrometer for the Dedicated Scanning Transmission Electron Microscope

    Get PDF
    A Wien filter electron spectrometer has been added to a VG Microscopes, Ltd. HB501 STEM to improve the energy resolution and accuracy of energy loss analysis combined with a high spatial resolution. An energy resolution of 130meV is obtained with a 2mR collection angle at the specimen. The 0.28eV wide field emission energy profile therefore dominates the energy resolution for the device. The energy axis is automatically calibrated by the electrostatic method of scanning, yielding an accuracy and stability of 30meV. A preliminary energy resolution of 0.5eV is demonstrated for 20mR full collection angles at the specimen. Results of experiments suggest that, even with a 0.3eV energy resolution, interband losses below 1.5eV will be hard to observe due to the long exponentially decaying field emission profile. Deconvolution procedures will probably be necessary as a result

    Physical mechanisms of interface-mediated intervalley coupling in Si

    Full text link
    The conduction band degeneracy in Si is detrimental to quantum computing based on spin qubits, for which a nondegenerate ground orbital state is desirable. This degeneracy is lifted at an interface with an insulator as the spatially abrupt change in the conduction band minimum leads to intervalley scattering. We present a theoretical study of the interface-induced valley splitting in Si that provides simple criteria for optimal fabrication parameters to maximize this splitting. Our work emphasizes the relevance of different interface-related properties to the valley splitting.Comment: 4 pages, revised versio

    Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

    Full text link
    Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(⋅\cdot) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation RR such that SAT(RR) can be solved at least as fast as any other NP-hard SAT(⋅\cdot) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MaxOnes(Γ\Gamma)) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(Δ\Delta)). With the help of these languages we relate MaxOnes and VCSP to the exponential time hypothesis in several different ways.Comment: This is an extended version of Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis, appearing in Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science MFCS 2014 Budapest, August 25-29, 201

    Electron energy loss spectroscopy of single silicon nanocrystals: The conduction band

    Get PDF
    Spatially resolved electron energy loss spectroscopy has been performed on single, H-terminated, Si nanocrystals in the size range 25–500 Å. The particles were prepared via the gas-phase photolysis of a dilute Si2H6/He mixture in a gas flow cell, and deposited on a holey carbon grid for analysis. Energy loss within a few eV of the core 2p ionization edge reveals information about the conduction band states at Δ1 and L1 in the Brillouin zone. The conduction band edge is observed to shift to higher energy as the inverse square of the particle radius. In addition, a strong increase in the oscillator strength for these transitions is observed for decreasing particle sizes below 60 Å

    Moral Hypocrisy and Acting for Reasons: How Moralizing Can Invite Self-Deception

    Get PDF
    According to some, contemporary social psychology is aptly described as a study in moral hypocrisy. In this paper we argue that this is unfortunate when understood as establishing that we only care about appearing to act morally, not about true moral action. A philosophically more interesting interpretation of the “moral hypocrisy”-findings understands it to establish that we care so much about morality that it might lead to (1) self-deception about the moral nature of our motives and/or (2) misperceptions regarding what we should or should not do in everyday or experimental situations. In this paper we argue for this claim by elaborating on a fascinating series of experiments by Daniel Batson and his colleagues who have consistently contributed to the moral hypocrisy findings since the late nineties, and showing in what way they contribute to a better understanding of moral agency, rather than undermine the idea that we are moral agents

    Coexisting Fermi Liquid and Strange Metal Phenomena in Sr2_2RuO4_4

    Full text link
    The strange metal is an enigmatic phase whose properties are irreconcilable with the established Fermi liquid theory of conductors. A fundamental question is whether a strange metal and a Fermi liquid are distinct phases of matter, or whether a material can be intermediate between or in a superposition of the two. We studied the collective density response of the correlated metal Sr2_2RuO4_4 by momentum-resolved electron energy-loss spectroscopy (M-EELS). We discovered that a broad continuum of non-propagating charge fluctuations (a characteristic of strange metals) and also a dispersing Fermi liquid-like collective mode at low energies and long wavelengths coexist in the same material at the same temperature. These features exhibit a spectral weight redistribution and velocity renormalization when we cool the material through the quasiparticle coherence temperature. Our results show not only that strange metal and Fermi liquid phenomena can coexist but also that Sr2_2RuO4_4 serves as an ideal test case for studying the interaction between the two.Comment: 12 pages, 4 figure

    \u201cGive, but Give until It Hurts\u201d: The Modulatory Role of Trait Emotional Intelligence on the Motivation to Help

    Get PDF
    Two studies investigated the effect of trait Emotional Intelligence (trait EI) on people\u2019s moti- vation to help. In Study 1, we developed a new computer-based paradigm that tested partic- ipants\u2019 motivation to help by measuring their performance on a task in which they could gain a hypothetical amount of money to help children in need. Crucially, we manipulated partici- pants\u2019 perceived efficacy by informing them that they had been either able to save the chil- dren (positive feedback) or unable to save the children (negative feedback). We measured trait EI using the Trait Emotional Intelligence Questionnaire\u2013Short Form (TEIQue-SF) and assessed participants\u2019 affective reactions during the experiment using the PANAS-X. Results showed that high and low trait EI participants performed differently after the presen- tation of feedback on their ineffectiveness in helping others in need. Both groups showed increasing negative affective states during the experiment when the feedback was negative; however, high trait EI participants better managed their affective reactions, modulating the impact of their emotions on performance and maintaining a high level of motivation to help. In Study 2, we used a similar computerized task and tested a control situation to explore the effect of trait EI on participants\u2019 behavior when facing failure or success in a scenario unre- lated to helping others in need. No effect of feedback emerged on participants\u2019 emotional states in the second study. Taken together our results show that trait EI influences the impact of success and failure on behavior only in affect-rich situation like those in which people are asked to help others in need

    First-principle study of excitonic self-trapping in diamond

    Full text link
    We present a first-principles study of excitonic self-trapping in diamond. Our calculation provides evidence for self-trapping of the 1s core exciton and gives a coherent interpretation of recent experimental X-ray absorption and emission data. Self-trapping does not occur in the case of a single valence exciton. We predict, however, that self-trapping should occur in the case of a valence biexciton. This process is accompanied by a large local relaxation of the lattice which could be observed experimentally.Comment: 12 pages, RevTex file, 3 Postscript figure
    • …
    corecore