2,092 research outputs found

    Footprinting with MPE•Fe(II). Complementary-strand analyses of distamycin- and actinomycin-binding sites on heterogeneous DNA

    Get PDF
    We recently reported a direct technique for determining the binding sites of small molecules on naturally occurring heterogeneous DNA (Van Dyke et al. 1982). Methidiumpropyl-EDTA·Fe(II) (MPE·Fe[II]) (Hertzberg and Dervan 1982) cleaves double-helical DNA with low sequence-specificity (Van Dyke et al. 1982). Using a combination of MPE·Fe(II) partial cleavage of drug-protected DNA fragments and Maxam-Gilbert sequencing methods, we determined the drug-protected sites on one strand of a double-helical fragment from pBR322 for the intercalator actinomycin D (Goldberg et al. 1962; Muller and Crothers 1968; Wells and Larson 1970; Sobell 1973; Krugh 1981; Patel et al. 1981; Takusagawa et al. 1982) and the minor-groove binders netropsin and distamycin A (Luck et al. 1974; Wartell et al. 1974; Zimmer 1975; Berman et al. 1979; Krylov et al. 1979). Netropsin and distamycin A gave identical DNA-cleavage inhibition patterns or footprints in regions rich in dA·dT base pairs. Actinomycin D afforded a completely different footprint..

    Three-dimensional flow field from a radial vortex filament in a cylindrical annulus

    Get PDF
    Three dimensional flow field from radial vortex filament in cylindrical annulus of axial flow turbin

    International Nuclear Law: An Introduction

    Get PDF

    Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5

    Get PDF
    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,βE_k^{\alpha,\beta} with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure

    Motion of vortices in type II superconductors

    Get PDF
    The methods of formal asymptotics are used to examine the behaviour of a system of curvilinear vortices in a type II superconductor as the thickness of the vortex cores tends to zero. The vortices then appear as singularities in the field equation and are analagous to line vortices in inviscid hydrodynamics. A local analysis near each vortex core gives an equation of motion governing the evolution of these singularities

    A note on leapfrogging vortex rings

    Get PDF
    In this paper we provide examples, by numerical simulation using the Navier-Stokes equations for axisymmetric laminar flow, of the 'leapfrogging' motion of two, initially identical, vortex rings which share a common axis of symmetry. We show that the number of clear passes that each ring makes through the other increases with Reynolds number, and that as long as the configuration remains stable the two rings ultimately merge to form a single vortex ring
    corecore