1,766 research outputs found
Development of a Li2MoO4 scintillating bolometer for low background physics
We present the performance of a 33 g Li2MoO4 crystal working as a
scintillating bolometer. The crystal was tested for more than 400 h in a
dilution refrigerator installed in the underground laboratory of Laboratori
Nazionali del Gran Sasso (Italy). This compound shows promising features in the
frame of neutron detection, dark matter search (solar axions) and neutrinoless
double-beta decay physics. Low temperature scintillating properties were
investigated by means of different alpha, beta/gamma and neutron sources, and
for the first time the Light Yield for different types of interacting particle
is estimated. The detector shows great ability of tagging fast neutron
interactions and high intrinsic radiopurity levels (< 90 \muBq/kg for 238-U and
< 110 \muBq/kg for 232-Th).Comment: revised versio
Addition of Organic Acids to Base Wines: Impacts on the Technological Characteristics and the Foam Quality of Sparkling Wines
Searches for neutrinoless double beta decay
Neutrinoless double beta decay is a lepton number violating process whose
observation would also establish that neutrinos are their own anti-particles.
There are many experimental efforts with a variety of techniques. Some (EXO,
Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has
reported the first measurement of the half life for the double beta decay with
two neutrinos of Xe. The sensitivities of the different proposals are
reviewed.Comment: 8 pages, prepared for TAUP 201
CALDER - Neutrinoless double-beta decay identification in TeO bolometers with kinetic inductance detectors
Next-generation experiments searching for neutrinoless double-beta decay must
be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of
988 TeO bolometers being commissioned at Laboratori Nazionali del Gran
Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that
can be improved by removing the background from radioactivity. This is
possible if, in coincidence with the heat release in a bolometer, the Cherenkov
light emitted by the signal is detected. The amount of light detected
is so far limited to only 100 eV, requiring low-noise cryogenic light
detectors. The CALDER project (Cryogenic wide-Area Light Detectors with
Excellent Resolution) aims at developing a small prototype experiment
consisting of TeO bolometers coupled to new light detectors based on
kinetic inductance detectors. The R&D is focused on the light detectors that
could be implemented in a next-generation neutrinoless double-beta decay
experiment.Comment: 8 pages, 3 figures, added reference to first result
STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.
Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma
Searches for neutrinoless double beta decay
Neutrinoless double beta decay is a lepton number violating process whose
observation would also establish that neutrinos are their own anti-particles.
There are many experimental efforts with a variety of techniques. Some (EXO,
Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has
reported the first measurement of the half life for the double beta decay with
two neutrinos of Xe. The sensitivities of the different proposals are
reviewed.Comment: 8 pages, prepared for TAUP 201
Searches for neutrinoless double beta decay
Neutrinoless double beta decay is a lepton number violating process whose
observation would also establish that neutrinos are their own anti-particles.
There are many experimental efforts with a variety of techniques. Some (EXO,
Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has
reported the first measurement of the half life for the double beta decay with
two neutrinos of Xe. The sensitivities of the different proposals are
reviewed.Comment: 8 pages, prepared for TAUP 201
First array of enriched ZnSe bolometers to search for double beta decay
The R&D activity performed during the last years proved the potential of ZnSe
scintillating bolometers to the search for neutrino-less double beta decay,
motivating the realization of the first large-mass experiment based on this
technology: CUPID-0. The isotopic enrichment in Se, the ZnSe
crystals growth, as well as the light detectors production have been
accomplished, and the experiment is now in construction at Laboratori Nazionali
del Gran Sasso (Italy). In this paper we present the results obtained testing
the first three ZnSe crystals operated as scintillating bolometers, and
we prove that their performance in terms of energy resolution, background
rejection capability and intrinsic radio-purity complies with the requirements
of CUPID-0
Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals
We report the results of a search for axions from the 14.4 keV M1 transition
from Fe-57 in the core of the sun using the axio-electric effect in TeO2
bolometers. The detectors are 5x5x5 cm3 crystals operated at about 10 mK in a
facility used to test bolometers for the CUORE experiment at the Laboratori
Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg d of data was made
using a newly developed low energy trigger which was optimized to reduce the
detectors energy threshold. An upper limit of 0.63 c kg-1 d-1 was established
at 95% C.L.. From this value, a lower bound at 95% C.L. was placed on the
Peccei-Quinn energy scale of fa >= 0.76 10**6 GeV for a value of S=0.55 for the
flavor-singlet axial vector matrix element. Bounds are given for the interval
0.15 < S < 0.55.Comment: 14 pages, 6 figures, submitted to JCA
- …
