59,955 research outputs found
Development of thermal control methods for specialized components and scientific instruments at very low temperatures (follow-on)
Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights
Recommended from our members
Reliability modeling of a 1-out-of-2 system: Research with diverse Off-the-shelf SQL database servers
Fault tolerance via design diversity is often the only viable way of achieving sufficient dependability levels when using off-the-shelf components. We have reported previously on studies with bug reports of four open-source and commercial off-the-shelf database servers and later release of two of them. The results were very promising for designers of fault-tolerant solutions that wish to employ diverse servers: very few bugs caused failures in more than one server and none caused failure in more than two. In this paper we offer details of two approaches we have studied to construct reliability growth models for a 1-out-of-2 fault-tolerant server which utilize the bug reports. The models presented are of practical significance to system designers wishing to employ diversity with off-the-shelf components since often the bug reports are the only direct dependability evidence available to them
What's the evidence that NICE guidance has been implemented? Results from a national evaluation using time series analysis, audit of patients' notes, and interviews
OBJECTIVES: To assess the extent and pattern of implementation of guidance issued by the National Institute for Clinical Excellence (NICE). DESIGN: Interrupted time series analysis, review of case notes, survey, and interviews. SETTING: Acute and primary care trusts in England and Wales. PARTICIPANTS: All primary care prescribing, hospital pharmacies; a random sample of 20 acute trusts, 17 mental health trusts, and 21 primary care trusts; and senior clinicians and managers from five acute trusts. MAIN OUTCOME MEASURES: Rates of prescribing and use of procedures and medical devices relative to evidence based guidance. RESULTS: 6308 usable patient audit forms were returned. Implementation of NICE guidance varied by trust and by topic. Prescribing of some taxanes for cancer (P <0.002) and orlistat for obesity (P <0.001) significantly increased in line with guidance. Prescribing of drugs for Alzheimer’s disease and prophylactic extraction of wisdom teeth showed trends consistent with, but not obviously a consequence of, the guidance. Prescribing practice often did not accord with the details of the guidance. No change was apparent in the use of hearing aids, hip prostheses, implantable cardioverter defibrillators, laparoscopic hernia repair, and laparoscopic colorectal cancer surgery after NICE guidance had been issued. CONCLUSIONS: Implementation of NICE guidance has been variable. Guidance seems more likely to be adopted when there is strong professional support, a stable and convincing evidence base, and no increased or unfunded costs, in organisations that have established good systems for tracking guidance implementation and where the professionals involved are not isolated. Guidance needs to be clear and reflect the clinical context
Search for d^* Dibaryon by Double-radiative Capture on Pionic Deuterium
We report a search for d^* dibaryon production by double-radiative capture on
pionic deuterium. The experiment was conducted at the TRIUMF cyclotron using
the RMC cylindrical pair spectrometer, and detected gamma-ray coincidences
following pion stops in liquid deuterium. We found no evidence for narrow
dibaryons, and obtained a branching ratio upper limit, BR < 6.7 times 10^{-6}
(90% C.L.), for narrow d^* production in the mass range from 1920 to 1980 MeV.
Replaced with Physics Letter B accepted version and corrected normalization.Comment: 9 pages, 4 figure
Recommended from our members
Examination of Bayesian belief network for safety assessment of nuclear computer-based systems
We report here on a continuation of work on the Bayesian Belief Network (BBN)model described in [Fenton, Littlewood et al. 1998]. As explained in the previous deliverable, our model concerns one part of the safety assessment task for computer and software based nuclear systems. We have produced a first complete, functioning version of our BBN model by eliciting a large numerical node probability table (NPT) required for our ‘Design Process Performance’ variable. The requirement for such large numerical NPTs poses some difficult questions about how, in general, large NPTs should be elicited from domain experts. We report about the methods we have devised to support the expert in building and validating a BBN. On the one hand, we have proceeded by eliciting approximate descriptions of the expert’s probabilistic beliefs, in terms of properties like stochastic orderings among distributions; on the other hand, we have explored ways of presenting to the expert visual and algebraic descriptions of relations among variables in the BBN, to assist the expert in an ongoing assessment of the validity of the BBN
Recommended from our members
Stochastic modelling of the effects of interdependencies between critical infrastructure
An approach to Quantitative Interdependency Analysis, in the context of Large Complex Critical Infrastructures, is presented in this paper. A Discrete state–space, Continuous–time, Stochastic Process models the operation of critical infrastructure, taking interdependencies into account. Of primary interest are the implications of both model detail (that is, level of model abstraction) and model parameterisation for the study of dependencies. Both of these factors are observed to affect the distribution of cascade–sizes within and across infrastructure
The Geant4 Hadronic Verification Suite for the Cascade Energy Range
A Geant4 hadronic process verification suite has been designed to test and
optimize Geant4 hadronic models in the cascade energy range. It focuses on
quantities relevant to the LHC radiation environment and spallation source
targets. The general structure of the suite is presented, including the user
interface, stages of verification, management of experimental data, event
generation, and comparison of results to data. Verification results for the
newly released Binary cascade and Bertini cascade models are presented.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 5 pages, LaTeX, 3 eps figures. PSN
MOMT00
SWECS tower dynamics analysis methods and results
Several different tower dynamics analysis methods and computer codes were used to determine the natural frequencies and mode shapes of both guyed and freestanding wind turbine towers. These analysis methods are described and the results for two types of towers, a guyed tower and a freestanding tower, are shown. The advantages and disadvantages in the use of and the accuracy of each method are also described
The Variation of Integrated Star IMFs among Galaxies
The integrated galaxial initial mass function (IGIMF) is the relevant
distribution function containing the information on the distribution of stellar
remnants, the number of supernovae and the chemical enrichment history of a
galaxy. Since most stars form in embedded star clusters with different masses
the IGIMF becomes an integral of the assumed (universal or invariant) stellar
IMF over the embedded star-cluster mass function (ECMF). For a range of
reasonable assumptions about the IMF and the ECMF we find the IGIMF to be
steeper (containing fewer massive stars per star) than the stellar IMF, but
below a few Msol it is invariant and identical to the stellar IMF for all
galaxies. However, the steepening sensitively depends on the form of the ECMF
in the low-mass regime. Furthermore, observations indicate a relation between
the star formation rate of a galaxy and the most massive young stellar cluster
in it. The assumption that this cluster mass marks the upper end of a
young-cluster mass function leads to a connection of the star formation rate
and the slope of the IGIMF above a few Msol. The IGIMF varies with the star
formation history of a galaxy. Notably, large variations of the IGIMF are
evident for dE, dIrr and LSB galaxies with a small to modest stellar mass. We
find that for any galaxy the number of supernovae per star (NSNS) is suppressed
relative to that expected for a Salpeter IMF. Dwarf galaxies have a smaller
NSNS compared to massive galaxies. For dwarf galaxies the NSNS varies
substantially depending on the galaxy assembly history and the assumptions made
about the low-mass end of the ECMF. The findings presented here may be of some
consequence for the cosmological evolution of the number of supernovae per
low-mass star and the chemical enrichment of galaxies of different mass.Comment: 27 pages, accepted for publication by Ap
Ill-posedness of degenerate dispersive equations
In this article we provide numerical and analytical evidence that some
degenerate dispersive partial differential equations are ill-posed.
Specifically we study the K(2,2) equation and
the "degenerate Airy" equation . For K(2,2) our results are
computational in nature: we conduct a series of numerical simulations which
demonstrate that data which is very small in can be of unit size at a
fixed time which is independent of the data's size. For the degenerate Airy
equation, our results are fully rigorous: we prove the existence of a compactly
supported self-similar solution which, when combined with certain scaling
invariances, implies ill-posedness (also in )
- …