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ABSTRACT

At the Rocky Flats Wind Systems Center, several
different tower dynamics analysis methods and
computer codes are used to determine the natural
frequencies and mode shapes of both guyed and
freestanding wind turbine towers. In this paper
these analysis methods are described and the
resuits for two types of towers: a guyed tower
and a freestanding tower are shown. The advan-
tages and disadvantages in the use of and the
accuracy of each method are also described.

INTRODUCTION

The accurate prediction of tower vibration fre-
qguencies and mode shapes is important in avoiding
unwanted vibration problems. At present, there is
a variety of structural dynamic analyses covering
a range of compTlexity and application. In this
paper, some of the existing analyses and corres-
ponding computer codes will be examined in order
to determine those which can be of use to the
SWECS industry.

A tower dynamics supporting research and technol-
ogy project has been conducted at the Rocky Flats
Small Wind Systems Center. The objective of this
projéct has been to determine those analyses which
are simple to use but give adequate results com-
pared to test results. This paper will present
some of the simpler tower dynamic analyses, their
correct use and accuracy. The simpler analysis
metheds will be presented in order of increasing
complexity and accuracy. The theory and use of
the methods will first be described, as well as
the accuracy of results for towers with various
mass and stiffness distributions. The results
from these analyses will then be compared to the
test results for two types of towers at Rocky
Flats: 1) a guyed tower with uniform mass and
stiffness, and 2) a freestanding tower with
uniform mass but tapered stiffness. It will be
shown that accurate determination of the bending
freguencies for towers with tapered stiffness is
more difficult, using the simpler analyses. This
will require the designer to use a more complex
analysis, such as SAPIV. It should be emphasized
that this paper deals specifically in determina-
tion of tower bending frequencies. The case of
torsional frequencies or coupled bending torsional

*Now with Energy Sciences, Inc., Boulder Colorado.

frequencies have not been analyzed, using the
methods of this paper. The results for these
frequencies may be the subject of a later paper.

THEORY AND USE OF THE METHODS
The Rayleigh Quotient

The Rayleigh Quotient forms the basis for some
approximate methods: the Rayleigh Method and
the Rayleigh Ritz Method, both to be described
here. The system to be analyzed is shown in
Figure 1. The freestanding tower has variable
mass and stiffness distributions pA{x) and
EI(x), respectively. A concentrated mass, M, is
attached at the tower top at a height, L, above
the ground.

Figure 1: System to be Analyzed.
By assuming the deflection v(x,t} in the torm:
vix,t} = ¢(x) sinpt
and eguating the tower potential energy at
maximum displacement to the kinetic energy at

minimum displacement, the Rayleigh Quotient can
be expressed:
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L 2
JEL(x) [¢"(x)1° dx

p(4) = 0
L 2 2
J pAlx) [a(x)]° dx + ML p(L)]
(4]

(1)

When ¢4 is an exact vibration mode of the tower, p
has the value of the corresponding exact natural
frequency; also, p“ is stationary with respect to
variations in ¢ at each of these points {Ref. 3).
This expression can be expected to give a good
approximation to the frequency if a good approxi-
mation to the mode shape is used to evaluate
Equation 1. A simple analysis can be formed for
the special case of a tower with uniform or

linearly tapered mass and stiffness distributions,

in order to find the first bending frequency.
A Simple Analysis

For a freestanding tower with linear mass and
stiffness distributions of the form:

EI{x} = EI5 {1 - 8 x/L)
PA{x) = oAy {1 - vy x/L)*
the approximate shape:

4 3 2
x) = (D) - D) + 6(1) *

can be used to evaluate Equation 1 with the
result:

pz ~ EI o 28.800 - 4.8008 (2)

= T -
PALL

(2.311 - 1.854y} + 9,004

where u 1s the ratio M/pAgL.

In those cases where exact frequencies for a
cantilever beam with a tip mass have been calcu-
lated, the results from Equation 2 can be com-
pared directly to give an indication of the
accuracy. Table 1 shows the dimensionless
frequency ratios:

3
voL

W = T—
0

P

obtained from Equation 1 compared to exact
results calculated, using a power series method
{Ref. 8).

*El, and oA, are the stiffness and mass
distributions of the tower at the base. The
case 3 =0, vy =0 is that of a uniform tower.

**The assumed mode shape should satisfy some or
all of the cantilever tower boundary condi-
tions. Here: ¢(o)= 0 and ¢'(0) = 0 are satis-
fied. The assumed mode shape should at Teast
satisfy the base boundary conditions.
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From Table I it can be seen that the accuracy of
results from Equation 1 diminishes for towers
with higher stiffness taper rates and larger tip
masses because the assumed first mode shape
#{x), used in the above analysis, approximates
the exact mode shape less accurately.

TABLE I: COMPARISON OF RESULTS OBTAINED FROM
SIMPLE METHOD (W¢) TO EXACT RESULTS
(W) FOR THE FIRgT BENDING FREQUENCY
RATIOS, FOR VARIOUS TAPERS AND TIP
MASS RATIOS.

Uniform Stiffness, Uniform Mass: 8= 0., vy=10
% Error

u Ne NS

1.0 1.56 1.60 2.6

2.0 1.16 1.19 2.6

Uniform Stiffness, Tapered Mass: 8= 0., vy = .9

u We We

1.0 1.68 1.73 3.0

2.0 1.21 1.24 2.5

Tapered Stiffness, Uniform Mass: 8= .9, vy=10

u We We % Error

1.0 | 1.33 | 1.47 | 10.5

2.0 0.99 1.10 11.1

Limitations of the Method

This simple method is applicable to freestanding
towers for mass and stiffness distributions
varying approximately linearly. Only the first
bending frequency can be found from Equation 2,
although the second bending frequency might be
estimated if the analyzer could evaluate Equa-
tion 1 with a good second mode shape approxima-
tion. Equation 2 is useful for obtaining a
rough estimate of the first bending frequency of
freestanding towers, without the use of a
computer.

A Rayleigh Computer Code

A program developed at MIT, Program Rayleigh
(Ref. 4), uses the Rayleigh procedure to evalu-
ate the first bending mode for freestanding
towers with nonlinear mass and stiffness distri-
butions. The tower can be divided into N equal
segments and constant values of mass and stiff-
ness are input along each segment. Simpson's
integration is then used to evaluate the inte-
grals in the Rayleigh Quotient.

Both the Simple Method and the Rayleigh Program
have the disadvantage that the user must input
an assumed mode shape. The accuracy of the
corresponding results depends on this one shape.

1
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In 2 method to be described next, a linear com-
bination of assumed shape functions is used to
form the function o¢(x) for use in the Rayleigh
Quotiant. This method is particularly useful for
guyed towers, because the mode shapes are harder
tc approximate with a simple function, such as

~that used in the simple method above.

77:7 THE_RAYLEIGH RITZ PROCEDURE

”W,The Pay1e1gh R1tz method 1ﬁvo1ves us1ng a set of

d shape functions y;{x) and combining
then to form the mode shape:

ﬁg;Aﬂﬂm+&%u)+...+Nwh) (3)

The A;'s are constants to be determined and the

_®{'s are a set of Tinearly independent func-

“tions, each satisfying some or all of the boun-
dary conditions of the tower.*

For a guyed tower, Ray1e1gh s Quotient can be
expfessed' '

L

TELX) [6"(x)12 dx + Ke[ s(a)12 ,
P2 (o) = 2 “w

oAb L4002 ax + MLa(L) 12

e
where K¢ is the guy wire st1ffness coefficient
and & is the guy wire attachment height, shown in
Figure 2. For three guy wires spaced 120° apart,
Kc can be shown to be (Ref 6)

,V,;{;%E??%:(V%—)cosze. G

- Wkile for four guy wires spaced 90° apart, the
factor 3/2 in Equation 5 is replaced by a 2.
These values of Kc are valid when the guy wires

have been tensioned suff1c1ent1y so that there is
nc \oﬁﬁl1ng between the guy wires and the tower

(Ref¥.

Substitution of the mode shape form in Equation 3
intc Equation 4 gives:

20 EIO z g Ay Ay diy o
Pl = g ——?‘———-_——-
oA L DA Ay by
Ji
Where:
1
- 1 - g " n 1 N
di; 6f(J b (2w " (2)dg + Koy, (2a) yy( ca)
(7)
1
byj = éh(a %(Ehﬁ(ﬂd€+ u%(l)%(n

i, 3= 1hL..., N

ard &, fl(E), h{g), ga, Kc and y; are the dimen-
sionless distance, stiffness, mass distribution,
guy level attachment, guy stiffness coefficient,
and tip mass ratio, respectively, as defined in
the nomenclature.

*The 4 functions should satisfy at least the
geometric boundary conditions (Ref. 3).

. Det [dij - Wzbij] =

Figure 2: Guyed Tower to be Analyzed.

It 1s known that the Rayleigh Quotient is sta-
t1onary with respect to variations in ¢(x), when
¢{x) is an exact mode shape for the tower. This

can be shown to require that
{Ref. 3)

The problem is thus reduced to finding the N
values of W2 which make the determinant of this
N x N matrix equal to zero. The N values of W

~give estimates for the first N frequencies of
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the tower.
Simple Analysis

A simple two-mede anaTySTEW?of freestanding
towers can be performed by using two approxi-

mating functions of the form:

p(g) = g% - 4¢3+ 652

{(8)
y2l€) = 385 - 10g* + 10¢°

The integrals dy; and bij then are:

dj; = 28.800 - 4.8008

djp = 24.000 - 6.857p

dyy = 34.286 - 12.8578
byp = 2.3111 - 1.8540y + 9.00yu
byp = 2.0698 - 1.6997y + 9.00yu

bpp = 1.8817 - 1.5732y + 9.00y

when det [dyj - wib i) 1s evaluated, the
polynomial gfw qw + 2 =0 must be solved
where:

g = bybpp - byp?

q = dyjbpp + byydpp - 2d1pbyp  (9)

dy1dap - dpp?

Yo
1



Table 11 shows the results for various values of
tip mass ratio and taper rates. This shows that
the simple two-mode method becomes inaccurate for
the second bending frequency ratios of towers
with large stiffness tapers. This method gives
more accurate results for the first bending fre-
quencies compared to the results of the previous
sections.

TABLE I1: EXACT (Wje) AND APPROXIMATE (Wj,)
FIRST AND SECOND BENDING FREQUENCY
RATIOS FOR A FREESTANDING TOWER.
TWO-MODE RAYLEIGH RITZ PROCEDURE, FOR
VARIOUS TAPERS AND TIP MASS RATIOS.

Uniform Stiffness, Uniform Mass: =0, vr=20
i H]e HJa %:Fri?r w2e w2a % Error
1.0/1.561.56] 0.0 16.25]17.61 8.4

2.0[1.16[1.16] 0.0 ||15.86{17.29] 9.0
Unform Stiffness, Tapered Mass: 8=0, v= .9

" N]e N‘a % Error wze w2a % Ervor

1.0[1.681.70] 0.6 22.37123.56 5.3

2.011.21)1.21| 0.0 22.17123.00 3.7

Tapered Stiffness, Uniform Mass: 8= .9, y=10

u w1e w]a % Error wZe N2a % Error

1.011.331.37] 3.0 11.81115.36| 30.1

2.0l0.98/1.02] 4.1 ||11.53[15.06] 31.0

This simple hand analysis can also be used for
guyed towers, using these two approximating func-
tions and including the guy wire stiffness
effects in the terms dj;. As an example, a
single guyed tower with the dimensionless stiff-
ness K¢ = 200 and guy level za = .8 was examined
for the first two bending frequencies. It was
found that Wy =~ 20.16 and W =~ 23.43. These
same results were calculated with a computer
program, to be described in the next section,
using a four-mode Rayleigh Ritz procedure with
the results: Wp = 19.82 and Wy =~ 22.45,

These results show that the simple two-mode
Rayleigh Ritz procedure gives fair results for a
guyed tower also.

As will now be shown, the use of more approxima-
ting y; functions will improve the results of
both the first and second bending mode frequen-
cies and will also give results for the higher
mode frequencies.

The Rayleigh Ritz Computer Program

The Rayleigh Ritz method can be used to determine

any number of modal frequencies; however, the
computational complexity increases greatly after

the first two or three modes. For this reason, a

computer code has been developed at Rocky Flats
using four approxjmg@ipg functions of the form:

£ - 4%+ 6¢?

n(§)

17183
wle) = 2g5 - 6g5 + 5¢"

3g5 - 10g* + 10¢3

g!0 - 2.5¢% + 1.607¢".

()

The program can be used for linear or nonlinear
mass and stiffness distributions by dividing the
tower into N sections {not necessarily equal)
and inputting constant values of stiffness and
mass along each section. Numerical integration
techniques are then used to evaluate the inte-
grals in the Rayleigh Quotient. Table III shows
the improvement for the first and second bending
frequency results, compared to the simple two-
mode method of Table II.

TABLE III: EXACT (Wie) AND APPROXIMATE (Wj,)
FIRST AND SECOND BENDING FREQUENCY
RATIOS FOR A FREESTANDING TOWER.
FOUR-MODE RAYLEIGH RITZ PROCEDURE FOR
VARIOUS TAPERS AND TIP MASS RATIOS.

Uniform Stiffness, Uniform Mass: g=0, y=0
% Error|]| W W % Error

wle wla 2e 2a
1.0§1.56]1.56 0.0 16.25{16.26 0.1

11

2.0j1.16{1.16{ 0.0 15.86715.88) 0.1
Unform Stiffness, Tapered Mass: g=0, vy = .9
B le w]a % Error w2€ N2a % Ervor
1.0§1.68§1.70] 0.6 22.37122.49} 0.5

L w

2.0{1.21]1.21} 0.0 22.17|122.30} 0.6
Tapered Stiffness, Uniform Mass: 8= .9, v=0
R IW W % Error{] W W % Error

le | la Ze 2a
1.011.33§1.34] 1.0 11.81{12.75] 8.0

2.010.98] .99} 1.0 11.53]12.45| 8.0

The program can also be run for guyed towers,
when the guy wire tension is large enough so
that no coupling between the guy wire first mode
and tower first mode occurs (Ref. 1),

Limitations of the Rayleigh Ritz Method

Both the simple hand method and the four-mode
Rayleigh Ritz program can be used to calculate
first and second mode bending frequencies for
freestanding and guyed towers. The simple
method gives poor results for the second bending
frequencies of towers with high stiffness
tapers. The more complex four-mode method can
be used for towers having more complex nonlinear
mass and stiffness distributions, and gives
better results than the two-mode method, for
highly tapered towers. The disadvantage of this
method is that a computer must be used.

me



A code for a TI-b9 programmable calculator has
been developed to handle towers with nonlinear
mass and stiffness distributions.

Program TUSF {Turbine System Frequencies)

The twn-mode Rayleigh Ritz procedure covered
above can only be used for towers which have
approximately linear mass and stiffness distribu-
tions. For towers with nonlinear distributions,
this method would be hard to use, because the
integrals in the Rayleigh Ritz Method would be
too hard tc evaluate.

To circumvent this difficulty, a method similar
to the Rayleigh Ritz procedure has been developed
for towers with nonlinear mass and stiffness
(Ref, 6). The tower can be divided into N sec-
tions and constant values of mass and stiffness
are input along each sigment. Numerical integra-
tion techniques are then used to find the natural
frequencies (Ref. 7).

In the techniques described previously, the

-nacelle and rotor were modeled as a single lumped

mass 2t the tower top. This program includes the
effects of rotor moments of inertia and nacelle-
rotor C.G. location on the system frequencies.

In addition, the effects of rotor spin rate on

the natural frequencies are taken into account.

The program treats the tower as a flexible member
and the naczlie and rotor as rigid bodies. It
will be shown in the section on comparfsons of
analytical results to test results that the
accuracy of results from this program are similar
to the accuracy of results from the Rayleigh Ritz
procedure, i.e., the results for the second
bending frejuencies are less accurate than the
first bending frequencies.

In the spproximate methods discussed above, an
infinite degree of freedom structure is modeled
as a beam having finite degrees of freedom. It
can be shown that this causes the frequency
estimates from these methods to be higher than
the exact values {Ref. 6). A method using more
degrees of freedom (such as SAPIV) gives more
accurate fraquency estimates.

In the next section, the test procedures and
resylts for two types of towers will be present-
ed. In the section on comparisons of analytical
resiults to test results these simple methods, for
these towers, will be compared. The results from
more accurate structural codes (such as SAPIV)
will alsoc be shown. A recommendation as to which
tower types can be analyzed, using the simple
method, will also be given.

- TEST PROCEDURES AND RESULTS
Objectives

This section deals specifically with the test
methods and resuits for a Rohn 25G single guyed
tower and a Rohn SSV freestanding tower. Impact
tests were performed on each tower to determine
the predominant modes of vibration and to compare
the test results with various analytical methods.

Test Description and Theory

A technique currently being used at the Rocky
Flats Test Center, for dynamic testing, is
commonly known as impact testing. The structure
can be excited with an impulse. This can be
accomplished with the use of a hammer with a
load cell attached, thereby exciting the struc-
ture with a known input, as shown in Figure 3.

@ DIGITAL ANALYZER

@ DIGITAL ScoPE |

D ANALOG RECORDER

@ BUFFER /vOLTAGE FOUDWER

(® CHARGE AMPLIFIER

® DUFERENTIAL AMP

@ OIFFERENTIAL AMP
ACCELEROMETER
LBAD cELL

TEST SPECIMEN.

(0] SIENAL pRocESSING
(2

COWECTION /REDUCTION

Figure 3.

With the load cell, the input force can be
accurately measured; the response of the struc-
ture can be measured with the use of an acceler-
ometer. Provided the input and response signals
are fourier transformable (Ref. 2}, the frequen-
cy response function can be computed.

In practice, better results are obtained by
computing frequency response functions as a
ratio of the cross spectrum between the input
and output, to the power spectrum of the input
{(Ref. 2). This s useful in eliminating the
effects of noise on the input and output signal
measurements. If the input and output noise 1is
noncoherent, the effects on the cross spectrum,
involving the noise, will yield zero.

Test Specimens and Test Results
A Rohn 25G Single Guyed Tower

Figure 4 shows a Rohn 25G 40-ft guyed tower.

The tower has constant mass and stiffness
distributions as given in Table IV. The tower
stiffness distribution was determined by first
finding the moment of inertia of a tower cross
section about the centroid, as shown in Fig-

ure 5. Because the distance between the tower
Tegs remains constant, for various heights, the
moment of inertia and thus the stiffness distri-
bution remains constant. The mass distribution
also is constant, since the weight and length of
each tower section is the same. The effects of
the cross braces have been neglected in the”
stiffness determination, but have been included
in the mass distribution.

ol
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Figure 4.
TABLE IV: ROHN 25G PARAMETERS
Tower Height (L) 40.0 ft
Stiffness Distribution (EI)  3.14 x 10° 1b-ft?
Mass Distribution (pA) 0.124 1b-s?/ft?
Tower Top Mass (M) 10.87 1b-s?/ft?
Guy Wire Attachment Level (a} 35.0 ft

Guy Wire Cross Sectional
Area (A') 0.00015 ft?
Guy Wire Elastic Modulus (E') 2.88 x 10° 1b/ft?

Guy Wire Length {2) 48.45 ft
Guy Wire Stiffness

Coefficient (Kc) 6365.76 1b/ft

Yy
C) CROSS SECTIONAL AREA A
ENTROID
9.4
}n——‘ d ——»d
Ins & Iyy & 2Adt
Figure 5.

"The Rohn 25G was tested without a machine on

top, but with the addition of 380 1b on the
tower top. Table V shows the test results,
using the impact testing methods. In this case,
the three guy wires were tensioned sufficiently
so that each had nearly the same fundamental
frequency. As can be seen from Table V, the guy
fundamental frequency was well separated from
the tower first bending frequency, so that
resonance between the guy wires and tower was
not a problem (Ref. 1).

As will be shown in the next section, the simple
methods can be used to get good estimates for
the first bending frequencies for this tower.

TRBLE V: ROHN 25G TEST RESULTS :

First Mode Bending 2.6 Hz
First Mode Torsional 5.7 Hz
Second Mode Bending 7.8 Hz
Guy Wire Fundamental 6.9 Hz :

A Rohn SSV Freestanding Tower

Figure 6 shows a 60-ft Rohn SSV freestanding
tower. Unlike the Rohn 25G, the distance
between tower legs decreases with increasing
tower height. The stiffness distribution thus
decreases from base to height. Figure 6 shows a .
plot of the mass and stiffness distribution for i
this tower. The mass distribution is nearly i
uniform, but the stiffness distribution tapers
to 0,023 of the value at the tower base.

The Rohn SSV was tested without a machine on top
but with a top plate of approximately 30 1b. As
will be shown in the next section, accurate
estimation of the first and second bending
frequencies for this tower is difficult, using

Ellx) 'b-h‘-.lﬂ‘
- e > B e W

Figure 6.



First Hode Bending 3
. Second Mode Bending 12.

the simple methods, because of the large stiff-
ness taper. Also, the effects of the cross-
members were neglected in the moment of inertia
caiculations, which poses further difficulties.
Takle ¥1 shows the test results for the first two
bending frequencies.

TABLE VI: ROHN SSV TEST RESULTS

.3 Hz
7

COMPARISONS OF ANALYTICAL RESULTS TO TEST RESULTS

In this section the results from the simple anal-

"’YEis methods and results from complex methods

such as SAPIV (Ref. 5) will be compared to test

_results for the two towers presented in the

previous section. A recommendation of the use
and accuracy of the simple methods w111 be made.

Rohn 256G Resu1ts Summary

Table VII shows the results for the Rohn 25G.

“The sanp1e two-mode Rayleigh Ritz method, a hand

method. gives fair results for the first frequen-
cy (pi, “but poor results for the second fre-
quency (pz) The utility of this method is

that it can be used to obtain a rough estimate,

by hend calcuTations, for the first bending
frequency of guyed or freestanding towers. This
method gives less accurate results for towers
wi;hwjarge stiffness tapers, however.

T TABLE VLI ROHN 25G RESULTS SUMMARY

pl Error pa Error

Z

2.6 | 0.0% 7.8 0%

2.8 1 7.7% 9.0 16%

2.6 | 0.0% 11.2 | 443

2.6 | 0.0% 8.6 10%

M‘TGUY 2.6 | 0.0% 8.6 10%

Progran TUSF, a hand ca1cu1ator code, gives much
more accurate results for the first mode. This
code can also be used to determine the first
bending frequency of towers with nonlinear mass
and stiffness distributions, without use of a
large computer.

The Rayleigh Ritz four-mode procedure, a small
computer code developed at Rocky Flats, gives
excellent results for the first mode and fair
results for the second mode, while Program MITGUY
{Ref. 4], a program ut11121ng matrix iteration

metheds, gives abowl the same results (to one
decimal place).

The 10 percent inaccuracy in the second mode

‘Tesults is thought to be caused because of

neglect of the cross-members in determination of
the tower bending stiffness. This difficulty
will be emphasized in the comparison of results
for the Rohn SSV, to be shown next, in which use
of the complex code SAPIV, which models the tower
cross-members, is necessary.

Rohn SSV Results Summary

Table VIII shows the results for the Rohn SSV
tower. The analysis of the Rohn SSY with the
simple hand methods of the Rayleigh Method and
Two-Mode Rayleigh Ritz Method is difficult,
because the stiffness and mass distributions are
nonlinear. For these analyses, the mass

distribution was assumed constant, with a value

equal to the base value. The stiffness
distribution was approximated as linear, with a
value of the taper rate B equal to 0.98. The
resulting frequency estimates are too high,
because the actual stiffness of the tower is
Tess than what is given by this straight line
approximation.

TABLE VIII: ROHN SSV RESULTS SUMMARY

Method P, Error P2 Error
Test 3.3 0% | 12.7 | 0%
Rayleigh 3.8 19% - -

R-R-2 Mode | 3.6 | 12% | 22.3 | 76%

Program TUSF | 3.5 9% 16.3 | 28%

R-R-4 Mode 3.4 6% 15,5 | 22%

MITGUY 3.4 6% 14.8 § 17%

SAPIV 3.1 3% 13.0 § 2.4%

“For towers with nonlinear mass and stiffness

distributions, the program TUSF and the four-
mode Rayleigh Ritz procedure can be used to find
more accurate values of the first bending fre-
quencies. The tower can be divided into N
sections and constant values of mass and stiff-
ness input along each segment. It was found
that about 20 segments were needed in order to
model the large stiffness taper correctly.

From Table VIII it can be seen that the second
bending frequency results from: 1) the simple
methods, and 2) the program MITGUY are in error
by more than 17%. For this reason, the complex
code SAPIV (Ref. 5) was used to model this
tower, taking into account the effects of each
cross-member. The improvement in the second
bending frequency is very evident.

In the simple methods, as well as MITGUY, this
tower was modeled as a beam, neglecting the
effects of the cross-members in the bending
stiffness. The cross-section moment of inertia
was calculated, by taking into account the three
legs only, as shown in Figure §. The actual
stiffness distribution of this tower is more
complicated than this approximation because of
the cross-members.

In the simple methods section it was shown that
they give less accurate results for a beam with
large stiffness tapers. For this truss-type of
tower, this error is increased because the
actual tower stiffness 1s more complicated than
that of a beam in which the cross-members have
been neglected.
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CONCLUSION AND RECOMMENDATIONS fe)
The simple methods can be used to determine good hie) -
estimates of the first bending frequencies and Ke
rough estimates of the second frequencies of
towers with uniform mass and stiffness distribu- 'C
tions. Guyed towers can also be analyzed, using
these methods, if the guy wire fundamental fre-
quency is well separated from the tower first
bending frequency so that guy wire-tower inter-
action will not occur. L
For towers with high stiffness tapers, or stiff- i

ness distributions which are hard to determine
accurately, more complex codes such as SAPIV may M
be needed, especially for accurate determination

of the second and higher bending frequency.

p
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NOMENCLATURE
a : Guy wire attachment level.
A Guy cable cross-sectional area.
E' Guy cable elastic modulus.
EI(x}: Tower stiffness at station X.
Ely ¢ Tower stiffness at the base.
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ET(LEV/E],
AAILE)/ Ay
Guy wire stiffness coefficient.

Dimensionless form of Kc:

Tower height.
Guy cable length.
Lumped mass at tower top.

Bending frequency (rad/sec) or
(Hz).

Time (sec.).
Tower deflection.
Dimensionless frequency.

Coefficients 1n approximate
mode shape.

Functions for approximating
mode shapes.

Rate of decrease of linear
stiffness.

Rate of decrease of linear mass
distribution.

X/L.
a/l.

Angle guy cable makes with
ground.

Tip mass ratio: M/oAgL.

Mass distribution of tower at
section x.

Mass distribution of tower at
tower base.

Tower mode shape.
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QUESTIONS AND ANSWERS

A.D. Wright

From: G, Beaulieu

'Q: 1) Don't you believe that direct solution of 4th order differential equation

would give more accurate mode shape and frequencies?

2) Did you take into account the rotary inertia of the rather large top mass?

Az 1) The direct solution of the beam governing equation would probably give more

aceurate results. The main emphasis of this paper, however, has been the
use of some simple methods, such as the Rayleigh-Ritz method as a hand

ealeulator code, such as program TUSF,

2) For the two towere presented in the paper, a Rohr 55V and a Rohr 25G, the

) rotary inertia effecte were neglected in the analysis results. These effects
could be easily taken into account, in the simple methods, by adding the
appropriate term to the kimetic energy.

Frecm: F.W. Perkins

Q: How do you determine a priori the location of nodes for higher mode analysis using
Rayleigh's method?

A: For towers with complex mass and stiffness distributions, the precise mode shape,

w——— & priort, ite difficult if not impossible to determine. The nodal points are there-

fore unknown., In the Rayleigh or Rayleigh Ritz procedure we choose a shape which
we_hope approximates the true mode shape. If the reeulting frequency estimate,

‘using this assumed shape, is inaccurate compared to test results, a better mode

"~ shape approximation is needed.
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