326 research outputs found

    Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Get PDF
    Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (<i>w</i>') and sonic temperature (<i>T</i><sub>s</sub>'), and are commonly used to measure sensible heat flux (<i>H</i>). Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared <i>H</i> calculated with <i>T</i><sub>s</sub> to <i>H</i> calculated with a co-located thermocouple and found that, for horizontal wind speed (<i>U</i>) less than 8 m s<sup>−1</sup>, the agreement was around ±30 W m<sup>−2</sup>. However, for <i>U</i> ≈ 8 m s<sup>−1</sup>, the CSAT <i>H</i> had a generally positive deviation from <i>H</i> calculated with the thermocouple, reaching a maximum difference of ≈250 W m<sup>−2</sup> at <i>U</i> ≈ 18 m s<sup>−1</sup>. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus <i>T</i><sub>s</sub> in high winds (due to a delayed detection of the sonic pulse), which resulted in the large CSAT heat flux errors. Although this <i>T</i><sub>s</sub> error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of <i>T</i><sub>s</sub>; however, a <i>T</i><sub>s</sub> error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the <i>T</i><sub>s</sub> error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed

    The fast and furious

    Get PDF
    Cocaine and amphetamines (‘stimulants’) are distinct central nervous system stimulants with similar effects (Pleuvry, 2009; Holman, 1994). Cocaine is a crystalline tropane alkaloid extracted from coca leaves. Amphetamines are a subclass of phenylethylamines with primarily stimulant effects, including amphetamine, methamphetamine, methcathinone and cathinone and referred to as ‘amphetamines’ in this review (Holman, 1994). MDMA (3,4-methylenedioxy-N-methamphetamine or ecstasy) is a substituted amphetamine known for its entactogenic, psychedelic, and stimulant effects (Morgan, 2000). Stimulants can produce increased wakefulness, focus and confidence, elevated mood, feelings of power, and decreased fatigue and appetite; stimulants also produce nervousness or anxiety and, in some cases, psychosis and suicidal thoughts (Holman, 1994; EMCDDA, 2007f; Hildrey et al., 2009; Pates and Riley, 2009). Although there is little evidence that stimulants cause physical dependence, tolerance may develop upon repetitive use and withdrawal may cause discomfort and depression (EMCDDA, 2007f; Pates and Riley, 2009). Users may engage in ‘coke or speed binges’ alternated with periods of withdrawal and abstinence (Beek et al., 2001)

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains reports on three research projects.U. S. Atomic Energy Commission (Contract AT(30-1)-3980

    Impacts of extreme 2013–2014 winter conditions on Lake Michigan's fall heat content, surface temperature, and evaporation

    Full text link
    Since the late 1990s, the Laurentian Great Lakes have experienced persistent low water levels and above average over‐lake evaporation rates. During the winter of 2013–2014, the lakes endured the most persistent, lowest temperatures and highest ice cover in recent history, fostering speculation that over‐lake evaporation rates might decrease and that water levels might rise. To address this speculation, we examined interseasonal relationships in Lake Michigan's thermal regime. We find pronounced relationships between winter conditions and subsequent fall heat content, modest relationships with fall surface temperature, but essentially no correlation with fall evaporation rates. Our findings suggest that the extreme winter conditions of 2013–2014 may have induced a shift in Lake Michigan's thermal regime and that this shift coincides with a recent (and ongoing) rise in Great Lakes water levels. If the shift persists, it could (assuming precipitation rates remain relatively constant) represent a return to thermal and hydrologic conditions not observed on Lake Michigan in over 15 years.Key PointsLake Michigan has been in an altered thermal regime since the late 1990sThe 2013–2014 winter may return Lake Michigan to pre‐1998 thermal conditionsHydrological impacts of the 2013–2014 cold winter remain unclearPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112001/1/grl52850.pd

    Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest

    Get PDF
    Photosynthesis by terrestrial plants represents the majority of CO₂ uptake on Earth, yet it is difficult to measure directly from space. Estimation of gross primary production (GPP) from remote sensing indices represents a primary source of uncertainty, in particular for observing seasonal variations in evergreen forests. Recent vegetation remote sensing techniques have highlighted spectral regions sensitive to dynamic changes in leaf/needle carotenoid composition, showing promise for tracking seasonal changes in photosynthesis of evergreen forests. However, these have mostly been investigated with intermittent field campaigns or with narrow-band spectrometers in these ecosystems. To investigate this potential, we continuously measured vegetation reflectance (400–900 nm) using a canopy spectrometer system, PhotoSpec, mounted on top of an eddy-covariance flux tower in a subalpine evergreen forest at Niwot Ridge, Colorado, USA. We analyzed driving spectral components in the measured canopy reflectance using both statistical and process-based approaches. The decomposed spectral components co-varied with carotenoid content and GPP, supporting the interpretation of the photochemical reflectance index (PRI) and the chlorophyll/carotenoid index (CCI). Although the entire 400–900 nm range showed additional spectral changes near the red edge, it did not provide significant improvements in GPP predictions. We found little seasonal variation in both normalized difference vegetation index (NDVI) and the near-infrared vegetation index (NIRv) in this ecosystem. In addition, we quantitatively determined needle-scale chlorophyll-to-carotenoid ratios as well as anthocyanin contents using full-spectrum inversions, both of which were tightly correlated with seasonal GPP changes. Reconstructing GPP from vegetation reflectance using partial least-squares regression (PLSR) explained approximately 87 % of the variability in observed GPP. Our results linked the seasonal variation in reflectance to the pool size of photoprotective pigments, highlighting all spectral locations within 400–900 nm associated with GPP seasonality in evergreen forests

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains research objectives, summary of research and reports on six research projects.U. S. Atomic Energy Commission (Contract AT(11-1)-3070

    Atmospheric Sciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science

    Get PDF
    Abstract: This collaborative article discusses the opportunities and challenges of adopting integrated, coordinated, open, and networked (ICON) principles in atmospheric sciences. From the global nature of the atmosphere, there has always been a need for atmospheric science to be an ICON science. With the help of evolving technology, it is possible to go further in implementing and spreading the ICON principles for productive global collaboration. In particular, technology transfer and applications could be approached with reproducibility in mind, and data‐sharing infrastructure could enable easier and better international collaboration. There are, however, various challenges in following the ICON principles in the acquisition, quality control, and maintenance of data, and the publication of results in a systematic way. Moreover, the extent of such issues varies geographically and hence poses different challenges to implementing ICON principles. In this commentary article, we briefly state our perspectives on the state of ICON, challenges we have met, and future opportunities. Furthermore, we describe how atmospheric science researchers have benefited from these collaborative multi‐dimensional approaches that fulfill the core goal of ICON
    corecore