research

Using sonic anemometer temperature to measure sensible heat flux in strong winds

Abstract

Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (<i>w</i>') and sonic temperature (<i>T</i><sub>s</sub>'), and are commonly used to measure sensible heat flux (<i>H</i>). Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared <i>H</i> calculated with <i>T</i><sub>s</sub> to <i>H</i> calculated with a co-located thermocouple and found that, for horizontal wind speed (<i>U</i>) less than 8 m s<sup>−1</sup>, the agreement was around ±30 W m<sup>−2</sup>. However, for <i>U</i> ≈ 8 m s<sup>−1</sup>, the CSAT <i>H</i> had a generally positive deviation from <i>H</i> calculated with the thermocouple, reaching a maximum difference of ≈250 W m<sup>−2</sup> at <i>U</i> ≈ 18 m s<sup>−1</sup>. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus <i>T</i><sub>s</sub> in high winds (due to a delayed detection of the sonic pulse), which resulted in the large CSAT heat flux errors. Although this <i>T</i><sub>s</sub> error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of <i>T</i><sub>s</sub>; however, a <i>T</i><sub>s</sub> error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the <i>T</i><sub>s</sub> error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed

    Similar works