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RESEARCH OBJECTIVES

We continue our experimental and theoretical program designed to gain further
understanding of the various types of waves and oscillations in ionized gases. We are
particularly interested in processes that are relevant to controlled thermonuclear
fusion and space research.

One of our major goals is the study of waves and radiation of large amplitude under
conditions where nonlinear phenomena and plasma turbulence are prominent. In this
connection we are studying such problems as the nonlinear coupling of two or more
electromagnetic waves and anomalous absorption of intense microwave and laser
radiation by the plasma. Studies of turbulence and fluctuations in plasma confined in
two-dimensional magnetic field configurations are contemplated. For this purpose
we shall use our steady-state linear quadrupole (SLIM- 1) and our small toroidal facility
(MINITOR). The construction of these two machines has been recently completed.

G. Bekefi

1. BREMSSTRAHLUNG INSTABILITY IN A PLASMA, INDUCED

BY ELECTRON STREAMING

Introduction

It is known that collisions between plasma particles can stimulate unstable electro-

magnetic oscillations within the ionized medium. 1 This class of instabilities requires,

in addition to a non-Maxwellian velocity distribution, a collision rate depending strongly

on the particle energy.2 These requirements can be shown to bear some resemblance

to those necessary for the occurrence of maser action in quantum devices. For that

reason, collision-induced plasma instabilities have usually been treated quantum-

mechanically.

This work was supported by the U. S. Atomic Energy Commission (Contract
AT( 11- 1)-3 070).
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Calculations 3 indicate that collisions of electrons with neutral atoms in Ramsauer-

like gases (e. g., argon, xenon, krypton) have a particularly favorable energy depen-

dence for exciting instabilities. Experiments 4 made both in the absence and presence

of an external dc magnetic field tend to confirm the theoretical predictions. A problem

of more general interest concerns the role of these instabilities in highly ionized media

where Coulomb encounters dominate. The problem may have relevance for astronomical

plasmas,5 and in the production and heating of plasmas by means of lasers6 and radio

waves.7 As early as 1958, Twiss8 addressed himself to this question of stability. Using

a semiclassical description of the emission and absorption processes, he argued that

electron-ion impacts can never lead to negative absorption (instability), however widely

the energy distribution in the electron gas may diverge from that of thermal equilibrium.

This conclusion seems to be diametrically opposed by more recent work of Marcuse, 9

and of Bunkin and Fedorov10 who, on the basis of a full quantum-mechanical model,

find that under certain conditions negative absorption may indeed be possible.

In this report we show that both views are correct: an isotropic distribution of

electron velocities (assumed implicitly by Twiss), however non-Maxwellian it may be,

cannot lead to a collisional instability in an electron-ion plasma. On the other hand, if

the distribution function is sufficiently anisotropic as in the case of the monoenergetic

electron stream postulated by Marcuse, the system can, in fact, become unstable.

In our treatment the dispersion equation for transverse electromagnetic waves prop-

agating in the plasma is derived from the classical, nonrelativistic Boltzmann equa-

tion. Particle collisions are allowed for by means of the familiar but approximate

"relaxation" model containing a speed-dependent collision rate. The special case of a

monoenergetic electron beam interacting with a background of ions is examined at length,

and a detailed stability analysis is carried out. The analysis shows that for plasma

parameters of practical interest, the waves are absolutely unstable and the instability

is confined to a narrow range of frequencies near, but above, the electron plasma fre-

quency. In the limit of a very tenuous plasma where collective effects can be dis -

regarded, we recover the results obtained by Marcuse.

Dispersion Relation

We describe the perturbation of the plasma electrons caused by an electromagnetic

wave, through the linearized Boltzmann equation,

8f af 8f1 +v e [E +vXB 1
at +M O W 1 at Br m wo w %

o
V av

e fm [E+vXB = -v(v) (1)

Here f(v) is the distribution of electron velocities in the absence of the perturbation; it
1W
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is assumed to be known. The parameter f (v, r, t) is a small perturbation caused by the

electromagnetic wave with RF fields given by E 1 and B ; E and B represent the

equilibrium fields. The right-hand side of the equation is an approximation to the

Boltzmann collision integral with v(v) as the speed-dependent collision frequency for

momentum transfer.

When we assume that there are no static E and B fields and that the electron
wO WO

motions are nonrelativistic, we find from Eq. 1 that

fl 8f f
-- + v - m E1 - v(v) fl. (2)t -r m W ,v 1

Allowing all oscillatory quantities contained in Eq. 2 to vary as exp[jt-jk - r], we solve

for fl with the result that

E (8f/Dv)
f = e w W (3)

m jW - jk - v + v(v)'

We find that the transverse electromagnetic wave in question propagates through the

plasma with a phase velocity w/k of the order of or greater than c. Under these con-

ditions, and subject to the requirement that v/c << 1, to a good approximation Eq. 3

is given by

E (Df/Dv)
fl e 1 (4)

I m jW + (v)

From this, the RF current density J and the RF conductivity oa can be deduced with the
wl

aid of the following relations:

3
J = -e f vf d v (5)

and

= o-E (6)

It is now convenient to express the velocity vector v in spherical coordinates (v, 0, 4)

as illustrated in Fig. XIII-1, and to orient the electric vector E of the wave along the

z axis (thus the propagation vector k of the wave lies in the x-y plane). By means of

Eqs. 4-6, we then find the following expression for the conductivity o in terms of the

distribution function f(v, 0, 4):

2 00 v3 dv sin 0 cos 0 dO Df 1 8f
= - 2 E o+ (v) cos 0 - sin . (7)

o 0 jo + v(v)
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Here c = Ne /me 1 is the electron plasma frequency, and the distribution f is

normalized so that

3
f f d3v = 1. (8)

We observe in passing that when f is isotropic (&f/ao = 0), the conductivity becomes

2 4Tr 3 v 8f/av0 = -ET v dv (9)
-o)p "

which is a result due to Margenaull and to Allis.12

The dispersion relation for transverse electromagnetic waves can now be determined

from a knowledge of a, or from the equivalent dielectric coefficient K, through

k2c2 / 2 = K = 1 + /(jco ) (10)

which, together with Eq. 7, yields the result that we sought

2

k 2 0 Tr v dv sin 0 cos 0 dO of I f
= 1 + 2 r -- cos - sin 0 . (11)

2 0 0 - jv(v)

When v(v) is independent of speed, Eq. 11 reduces to the familiar form

2
k2c2 p2 -2 -= 

(12)
w o(Co-jv)

which exhibits no unstable solutions. Similarly, Eq. 11 exhibits no unstable solutions

when f is isotropic and Maxwellian, in accord with our expectations. To study the

dependence of the instability on such plasma parameters as v, o , and c, a choice of

distribution function must be made. We now address ourselves to such a special case.

Monoenergetic Electron Beam

We consider a beam of electrons of velocity vo traveling at an angle 0o with respect

to the electric vector E of the electromagnetic wave (see Fig. XIII-1). The appropriate

distribution function for this situation is given by

f(v, 0, 4) = 2rv2 sin o 6(v-v ) 6(0-0). (13)

Substituting Eq. 13 in Eq. 11 and performing the elementary integrations, we find that
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2 2  pk - 1 - - -jv) R .
j(-j) (-j )

(14)

Here the electron-ion (or electron-atom) collision frequency v(v) is to be evaluated at

v = v ; and the parameter R is defined as
O

2
cos 0 .

0R [d In vv
d n v =V

(15)

The magnitude (and the sign) of the quantity R determine the stability of the wave.

When IR  < 1 the wave is stable: its amplitude either remains constant or falls expo-

nentially with time or distance. When IRI > 1 a growing wave may exist. For

Fig. XIII-1. Coordinate system: E is the electric field
of the electromagnetic wave whose propa-
gation vector k lies in the x-y plane.

purposes of computation it is often convenient to approximate the interaction potential
-s

between the electron and the struck particle by a power law of the form, °C r , where

s is a positive number. This results 3 in a collision frequency which has a simple

power-law dependence on the electron speed v

(16)h
V

CC
V

with

h = (s-4)/s.

Inserting Eq. 16 in Eq. 15, we then have

2
R=hcos 0,o (17)

and the wave can be unstable only if h > 1. We also see that the instability is

limited to a range of angles 0 given by0
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o <cosI (hh 1/2). (18)
O

For Coulomb collisions, h = -3 and 00 54.60. Therefore, an electromagnetic pertur-

bation grows only if the velocity vector of the electron beam lies within a cone of cone

angle equal to 1100, with the cone axis oriented parallel to the electric vector of the

wave. Outside this cone the wave is damped through Coulomb collisions.

At this point one may well ask what happens when the beam electrons are incident

from all possible directions 0 , with a uniform distribution over all angles of incidence.

Do the absorptions for 0 > 550 outweigh the unstable emissions for 0 < 550, or does

the isotropic distribution of electron streams remain unstable? To answer this question

we return to Eq. 11 and insert the isotropic distribution

f(v, , 4) =  4ryvo  6(v-v ). (19)

This yields a dispersion relation identical to that given by Eq. 14, with R of Eq. 15

replaced by the new function,

(1 d ln v
R(isot) d In v1 (20)

3 d ln v

It is now clear that for Coulomb collisions R(isot) = -1, and the waves are stable. This

provides the basis for the statement made in the introduction that a collisional insta-

bility in an electron-ion plasma does not occur in an isotropic velocity distribution. It

also confirms the findings of Twiss 8 and others. 14

Almost without exception, analyses of collisional instabilities made by earlier

workers have been confined to very tenuous plasmas in which collective phenomena

are negligible, and collisions are infrequent. Here the phase velocity of the wave differs

little from its free-space value of c. To make contact with these calculations, we

let (p/2) << 1 and (v/w) << 1 in Eq. 14 to obtain

22 2 .2
k c Cj - jp (v/ )[1+R], (21)

p

from which we readily deduce the absorption coefficient a -2Imk:

a (/w2)(v/c)[1+R]. (22)

We now adopt a more accurate expression for the electron-ion collision frequency

v(v) = 4TNro(c /v 3 ) In [2mv /hw], (23)
0 1

QPR No. 104 154



(XIII. PLASMAS AND CONTROLLED NUCLEAR FUSION)

where r is the classical electron radius, and inserting it in Eq. 22, we find that
o

a = 4wNr2 (W / (c/vo)3
o0 o

2mvo o ]
1 - 3 cos 2 o In o + 2 cos 2  .

o)I hw o

This is precisely the result derived by Marcuse from a full quantum-mechanical calcu-

lation of stimulated emission and absorption of radiation by an electron scattered in a

Coulomb potential. Since the term

I / in [2mvo/hw] is very much greater than

/c unity (a requirement implicit in Eq. 23),

3 -it follows that a is negative (instability)

when cos2 > 1/3, or 0 < 54. 60. This
O O

S// is the same instability condition that we
3 2

have discussed.

(a)

2 3

kc/wp

(b)

Fig. XIII-2.

Dispersion curves for real k and complex
w. Dashed line is the "light line." Note that
there is no solution below the plasma fre-

quency.

however, we shall not discuss cases wit

Stability Analysis

A plot of the dispersion equation (14),

evaluated for real k and complex w is

illustrated in Fig. XIII-2 for one set of

plasma parameters, R = -3, v(vo )/ p =

0. 35. Figure XIII-2a is typical of the

propagation characteristics of a trans-

verse electromagnetic wave traveling

through an isotropic plasma not acted

upon by external dc magnetic (or elec-

tric) fields: the phase velocity of the

wave exceeds c and approaches infinity

at low wave number. Figure XIII-2b

shows that the wave is unstable (Im w <0)

for all values of k. The growth rate of

the instability is largest at k = 0, that is,

at infinite wavelength. Calculations for

other plasma parameters exhibit results

qualitatively similar to those shown in

Fig. XIII-2, provided that R < -1. For

positive values of R the dispersion plots

are entirely different. Since our interest

is mainly with electron-ion plasmas,

h R > 0.

We apply the Bers-Briggs 1 5 test to see whether the instability in question is
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0.5 1.0 1.5

Re [W/W,

- Re [kc/w]
I .0

(b)

Fig. XIII-3. Stability diagram for the case R = -3, v/wp= 0.35.

Solid circles in (a) and (b) indicate conditions when
the frequency o is pure real. The saddle point of
co(k) [ 0 ] at w/w 1 2 - j(0. 15) and k = 0 indi-

cates an absolute instability.
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absolute (a pulse disturbance grows in time at all points in space), or convective (the

disturbance amplifies spatially). The test involves the mapping of trajectories in the

complex k-plane which are generated by trajectories taken in the complex co-plane. Spe-

cifically, we move along complex w lines from [Re (co) -j(oo)] to [Re (c) -j(0)] as is indi-

cated in Fig. XIII-3a. For each such trajectory labeled , , etc. in the

complex w-plane, we map the corresponding trajectory in the complex k-plane

(Fig. XIII-3b). An absolute instability occurs if two such trajectories, one from the

upper half k-plane and one from the lower

-o.16 half k-plane, merge as w is varied along
0.4 R=-3 the specified paths. In our case a merging

-02 - 0.2 0.5 is seen to occur at k = 0 and thus the insta-
0.6

bility is absolute. The small square in

-0.08 -0.1 0.7 Fig. XIII-3a shows the location of the insta-
-0.08

0.8 bility in the complex c-plane.
0.06 In the context of an infinite (uniform)

S-0.04
E 0.9 plasma, the absolute instability at k = 0 with

co complex is all that needs to be explored;

0.00 -o.0 1.0- the system will break spontaneously into

oscillation at a frequency and with a growth

+0.04 - - rate appropriate to this instability. When

we set k = 0 in Eq. 14, a cubic equation in

(0) c results. One of the roots is found to be

-0.08 - 0.28 R=-2 identically zero (Re w 1 = Im 1 = 0). The
0.18 0.34 two remaining roots have equal magnitudes

0.46
0.12 and "reversed" signs (Re c 2 = -Re w3'

-0.04 -0.08 0.54
3- Im W2 = Im 3) . Figure XIII-4 shows results

0.64 of computations for various values of
S0.00 -0.0 0.70 (vo)/p and for two different values of the

v/ = 0.78 - parameter R.. A negative value of c implies

+0.04 temporal growth of the wave. We see

that the instability is confined to a nar-
1.0 1.2 1.4

row range of frequencies located near and
Re [W/wpl

above the electron plasma frequency.
(b)

When the collision frequency becomes

Fig. XIII-4. too large the absolute instability disappears

Growth rate -Im (w/w ) and frequency (Im c >O). Now, one of two possibilities

Re (w/w ) of the absolute instability at arises: the plasma becomes stable or it

k = 0, for different values of v/ p and becomes convectively unstable. The latter

(a) R = -3, (b) R = -2. occurs - a fact that is illustrated in
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Fig. XIII-5. Here we again map trajectories in the complex k-plane for the specific tra-

jectories in the complex u-plane. The crossing of the real k axis by some trajectories

implies convective instabilities (those trajectories that do not cross give stable opera-

tion). Figure XIII-6 shows the corresponding dispersion curves.

Im [W/Wp]

Re [W/W,]

(a)

Im [kc/wpl

J Re [kc/w,]
3

Fig. XIII-5. Stability diagram for the case R = -3, v/W = 1. 2. The

crossing of the real k axis in (b) indicates a convective
(amplifying) wave. Trajectories that do not cross sig-
nify damped waves. Solid circles represent real w.
Dashed line joins the circles. Observe that waves trav-
eling from left to right and from right to left amplify.

We must now stress that the plasma regime, where convective instabilities are indi-

cated, represents a most unlikely physical situation: in the presence of the required

high collision rates, the electron beam will not maintain its identity for a sufficiently

long time. Indeed, we suspect that the beam will survive only when v(vo) p << 1. Under

these conditions, the dispersion equation (14) takes on the simpler form
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2 2

22 P p
kc2 P [I+R].

2 2 2 1
W W W

(25)

From this equation we readily find that the absolute instability located at k = 0, Re o

W , has a growth rate given by
P

Im W = v(vo)[+R]; (26)[v/ << 1],

which we can write in a more useful form as

o-
0

-0.08 -

-0.04 -

0.04 F-

0.08
2 3 4

kc/wp

Fig. XIII-6. Dispersion curves for real k and complex w for
the same plasma parameters as those considered
in Fig. XIII-5. Observe that there is a threshold
value of kc/w below which the wave damps.

p
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I [+R]. (27)

For an electron-ion plasma the ratio v/w p appearing on the right-hand side of Eq. 27

has a particularly simple form, Using the value of v given by Eq. 23, we find that

(v/ ) [3ND1-1 In A, (28)

where N = (4 Tr/3)L N is the number of particles in the Debye sphere, L D is the Debye

length, and A m [2mvo/h]. Most plasmas of interest have a value of ND between, say,

10 and 10. The parameter In A is of order 10. Thus, the expected growth rates are
-1 -4

Im (c) = zc , where the numerical coefficient z ranges between 10 and 10
p

Conclusions

We have shown that a collisional, Bremsstrahlung instability can be stimulated in an

electron-ion plasma, provided that the distribution of electron velocities is sufficiently

anisotropic. For reasons of simplicity, we have considered only the idealized model

of a monoenergetic electron stream. More realistic distributions, for example, a

drifted Maxwellian, should be examined.

A stability analysis has shown that for v/c << 1, the instability is absolute and occurs

only over a very narrow frequency band near and above the electron plasma frequency.

Hence in the context of an infinite (homogeneous) plasma the system breaks out spontan-

eously into oscillation and behaves somewhat like a very narrow-band oscillator.

Therefore, the use of this instability as a wideband amplifier, as implied by Ensley 7 and

Marcuse, is at present unfounded. Of course, difficulties of interpretation arise in

regard to the behavior of a physical system which of necessity is of finite size. This

difficulty is particularly great in our case when we find that the absolute instability is

associated with an infinite wavelength (k= 0). An analysis of this instability for a bounded

system has not yet been carried out.

We wish to thank J. Woo, a student in the Department of Physics, M. I. T., for his

assistance with computer programming.

G. Bekefi
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2. STEADY-STATE LINEAR MULTIPOLE (SLIM-1)

The steady-state linear quadrupole has been in operation since August 1971.1

During this period the mechanical operation of the device has been tested and pre-

liminary studies of the equilibrium plasma configuration have been carried out.

The maximum current attainable in each of the conducting bars is 75 kA, limited

by the allowable output voltage of the motor-generator set. At this current

level the quadrupole magnet dissipates 1.65 MW. With the normal conductor

separation of 32.7 cm, this current gives a 2600-G peak magnetic field strength

on the separatrix. At this field the ion Larmor radius is approximately 1 mm

(He ; T ~ 0. 25 eV). Because of currents in external conductors, the magnetic

axis is displaced by 1. 5 cm out of the plane of the quadrupole bars. The vacuum sys-

tem has worked well and is regularly pumped to a base pressure of 3 X 10 - 7 Torr
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in 24 h without baking.

Attempts to produce a plasma by using a slotted cylinder concentric with the magnetic

axis to couple RF power into the system did not work well. The plasma was very non-

uniform and was localized in the neighborhood of the magnetic field lines passing through

the cylinder slots. At present the plasma is produced with the use of the vacuum

chamber as a high-mode number cavity. Approximately 150 W of cw power at 4. 5 GHz

are coupled into the cavity through an iris. Under all conditions the reflected power

is less than 1%. An RF source providing up to 500 W at X-band has been obtained and

will be installed soon. This will allow operation at lower densities (longer mean-free

paths) than at present. The discharge is initiated by electron-cyclotron resonance and

power is absorbed by the plasma at both the electron-cyclotron and upper hybrid fre-

quencies over a large part of the plasma volume. Approximate power balance calcula-

tions indicate that at least 20% of the RF power is being absorbed by the plasma.

cI I II I I
0 10

cm

Fig. XIII-7. Cross section of the device showing the locations
of the separatrix 4s and critical field line 4c', as

well as the paths of the three movable probes.

A "radial" scan (Fig. XIII-7) of the ion saturation current collected by a Langmuir

probe shows that the plasma density is bell-shaped, centered at, or just inside of, the

separatrix. It can be fairly well fitted by a Gaussian function (Fig. XIII-8). The elec-

tron temperature is uniform (±20%) across the radius and varies between 10 eV and 20 eV,
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200

100

50

I+

20

10

5

0.

10

I I I I I 1 I l 0
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Scan of ion saturation current and electron
temperature measured by Probe 3. Vertical
dashed lines show positions of conducting
bar and vacuum chamber wall.

.0 0.2 0.4 0.6 0.8

t(ms)

Fig. XIII-9. Decay of ion saturation current with time. RF power

off at t = 0. Points for t < 0. 4 ms fitted by (1+at) - I

3 -1
and for t > 0.4 ms by exp -pt. (a = 10.9 X 10 s

3 -1.)
p = 3. 6 X 10 s )
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depending upon the external parameters - magnetic field, neutral pressure, and
11 -3

RF power. The maximum density obtained is -1. 5 X 10 cm -3. The plasma contain-

ment time is in agreement with the time required for the plasma to flow to the ends of

the system because of grad B drifts. This time is measured by looking at the den-

sity decay when the RF power is turned off (Fig. XIII-9). There appear to be two

regimes of decay. Initially the plasma density is proportional to 1/t, and then goes over

to an exponential decay. The characteristic time for containment is approximately

0. 5 ms.

1 2
po Torr

3x 10
- 4

Fig. XIII-10. Ion saturation current vs neutral gas
filling pressure with RF power as a
parameter.

The plasma density variation with RF power and with neutral filling pressure has

been investigated (Fig. XIII-10). The variation of density with power is n cc pa, with

1 > a > 1/2. As a function of filling pressure, the discharge cannot be sustained below

-4 X 10 - 5 Torr (in helium). Between 4 X 10 - 5 and 1 X 10 - 4 Torr the density increases

rapidly, approaching a maximum of ~6% ionization. Above this pressure the density

stays approximately constant. At maximum available RF power the density is such that

(w /w) 2 Z 1/2. The dependence of density on neutral pressure can be explained in terms

of competition between several different loss mechanisms. If the continuity equation

is written in the form
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an 2Sv.n - an - pn,at i

where the second term may represent classical diffusion and the third may indicate

particle drifts to the walls, the observed behavior is qualitatively explained. In equili-

brium, breakdown occurs at a neutral pressure given by vi(n o ) = P, and the plasma

density then increases rapidly with increasing no: an/an o = vi/noa. If the RF power is

shut off, the density decay is given by

ePt
n = n(o) e

an(0)
1 +- (1-e - t)

which at first shows an n c l/t dependence, and then goes over to an exponential decay.

As noted, the magnitude of the containment time is in agreement with the grad B drift

time (1/p), but more accurate identification of the coefficients a and p with definite

physical phenomena must await further measurements of their dependences on plasma

temperature and magnetic field.

P. A. Politzer
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B. Diffusion and Turbulence

Academic Research Staff

Prof. T. H. Dupree
Prof. L. M. Lidsky

Graduate Students

K. R. S. Chen P. M. Margosian N. R. Southoff
D. L. Ehst G. K. McCormick A. E. Wright

A. Pant

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Toroidal Electron Trap

Our original experiment for measuring the lifetime of electrons circulating in a
toroidal magnetic trap has been completed. The technology needed to inject electrons
and to measure their lifetimes has been perfected. A sweeping system to allow measure-
ment of the angular distribution of the circulating electrons has been built and is
being tested. This apparatus will be used for the study of waves propagating on elec-
tron beams and as a test bed for some experiments to be done on Alcator. To this end,
we have designed an electrode structure to give us a phase-stabilized beam. This will
be used for the accurate mapping of flux surfaces.

P. M. Margosian, L. M. Lidsky

2. Incoherent Scattering -Anisotropic Velocity Distribution

We are using incoherent scattering techniques to measure the distribution of plasma
electron velocities in the directions parallel and perpendicular to the confining magnetic
field. Experiments show that the electron temperature in the HCD plasma is isotropic
in normal operation. The experiment strives for high accuracy, and is highly automated
to serve as a test of the forthcoming Alcator Thomson scattering experiment.

G. K. McCormick, L. M. Lidsky

3. Coherent Scattering from Steady-State Plasmas

We are attempting to observe coherent scattering of 10. 6 [1 radiation from the moder-
ate density steady-state plasma produced by the hollow-cathode discharge source. Our
goal is the comparison of the experimentally measured and theoretically predicted scat-
tered spectra in order to determine the spectrum of plasma density fluctuations, that is,
to measure plasma turbulence. We are using a 100-W N2-CO2He laser as a radiation
source and cryogenic Ge detectors.

Measurements of signal-noise ratios for the separate parts of this system have been
completed. It appears that final S/N ratios of 6 are achievable. We hope to observe
the detailed structure of the plasma-frequency satellites.

K. R. S. Chen, L. M. Lidsky

This work is supported by the U.S. Atomic Energy Commission (Contract
AT(11-1)-3070).
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4. Superconducting Magnet Design Studies

It is clear that high-field steady-state plasma confinement experiments will require
the use of superconducting coils. We are studying the applicability of superconductor
technology to various toroidal plasma systems. We are studying, in particular, the
design problems of a 100-kG neutral ion-injected Tokamak experiment and of a uni-
conductor high-shear stellarator. In order to gain direct experience working with
modern superconducting materials, we have constructed a single low-field element
of a possible linear quadrupole pair.

A. E. Wright, L. M. Lidsky
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C. Plasma Diagnostics

Academic and Research Staff

Prof. G. Bekefi
Prof. E. V. George
Dr. P. A. Politzer

Graduate Students

R. J. Hawryluk

RESEARCH OBJECTIVES

The major goals of this program are to perfect known methods of measuring plasma
properties and to devise new techniques. Our present interest concerns the use of
optical spectroscopy in the diagnosis of dense, turbulent plasmas. The turbulent elec-
tric fields acting on excited atoms can cause a splitting of energy levels with the result
that new spectral lines may become evident. These can then be used to determine the
intensity and spectral distribution of the fluctuating fields. In the studies we use two
types of plasma sources, plasmas produced by focusing intense laser radiation on gas
or solid targets, and plasmas produced in a recently constructed coaxial plasma
gun.

G. Bekefi

This work was supported by the U.S. Atomic Energy Commission (Contract
AT(11- 1)-3070).
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D. Fusion-Related Studies

Academic Research Staff

Prof. L. M. Lidsky
Prof. R. A. Blanken
Prof. R. J. Briggs

Graduate Students

G. W. Brown
R. L. McCrory

RESEARCH OBJECTIVES

1. Fusion Feasibility

We will continue our work on the analysis of fusion power systems with particular
emphasis given to the possibilities inherent in fission-fusion symbiosis. The combina-
tion of a marginal D-T fusion reactor with an MSCR fission reactor operating on the

thorium cycle will be analyzed in more detail. Another system to be studied during
the next year is the D-D cycle mirror reactor with direct conversion. It appears that
efficient use of the neutrons generated in the complete D-D cycle may suffice to make
this concept economically viable also.

L. M. Lidsky

2. Economics of Reactor Concepts

All known fusion reactor concepts contain some difficult physical questions that are

often overlooked in the simple economic analyses done thus far. We plan to analyze
several of the more important of these to see their effect on fusion reactor economics.
For example, there is considerable experimental and theoretical evidence that the max-

imum allowable p in toroidal systems will be a strong function of the aspect ratio.

Studies of the economics of toroidal reactors are being undertaken using realistic
assumptions for the functional dependences of P on the aspect ratio. For another

example, the crucial problems of synchrotron radiation have been handled very
approximately in previous studies. A re-examination of the economics of mirror
reactors using more realistic models for radiation reabsorption is under way.

R. A. Blanken

This work is supported by the U. S. Atomic Energy Commission (Contract
AT(l 1-1)-3070).
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E. Feedback Stabilization

Academic Research Staff

Prof. R. R. Parker
Prof. L. D. Smullin
Prof. K. I. Thomassen

Graduate Students

R. S. Lowder
A. R. Millner

RESEARCH OBJECTIVES

The objectives of this research are to use feedback control techniques for the
diagnostic study and suppression of instabilities in plasmas. Under investigation are
ways to couple the feedback system to the plasma, the applicability of this method to
fusion devices, and the study of continuum feedback methods in general.

Present studies include investigations of the drift instability in a moderately ener-

getic plasma (1012 density, 15 eV temperature) and ways to couple to it, MHD insta-
bilities in a Tokamak and coupling schemes for their suppression, and adaptation of
the methods of modern control theory to the general problem of continuum feedback
control.

R. R. Parker, K. I. Thomassen

1. PRELIMINARY INVESTIGATION OF PLASMA INJECTION TECHNIQUES

Injection of energetic particles into the toroidal Alcator has been proposed as a pos-

sible means of heating the confined plasma. Because of the intense magnetic induction

inside Alcator, great difficulties might be anticipated in any attempt to inject unneutral-

ized particles as, for example, ion beams. Primary consideration has therefore been

given to various types of plasma and neutralized ion guns as sources for particle injec-

tion. It has been demonstrated by Bostick1 and others 2' 3 that neutralized beams, when
11 -3

they are dense enough (101 cm ) will penetrate intense transverse B-fields while

maintaining directed velocities of order 106 cm/s. The polarization E-field, resulting
from the initial q(v X B) force which tends to separate ions and electrons in the beam,

is sufficient to allow the beam to drift across the magnetic field (E X B drift). Thus, the

type of gun that we seek must be capable of producing a high-velocity (high-energy if

it is to be used for heating a plasma), high-density neutral beam.

A type of plasma gun which may have the desired characteristics is the Marshall

This work is supported by the U. S. Atomic Energy Commission (Contract
AT(11 -1)-3070.
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coaxial hydromagnetic gun.2 Plasma velocity equal to, or greater than, 107 cm/s and

density 1012 cm has been observed. Another attractive feature is the low percentage

of contaminants appearing in the plasma even at high currents (10 5 A). We would like

to know the particular gun parameters involved in determining the velocity and density

of the emitted plasma.

By treating the moving (velocity V s) current sheath between the coaxial electrodes

as a magnetic piston from which ionized particles ahead of it gain momentum at a rate

dp/dt = 2pMT(r 2r V 2 , and equating this with the electromechanical force resulting
0 o i s1 2

from the changing inductance (fm = i , where Y = aL/aZ, and Z is the axial

direction) it has been found4 that after one current cycle, a maximum of 75% of the

energy stored initially in the capacitor banks (energy that is used to initiate breakdown

and drive the sheath) is converted into plasma energy. Usually, this figure is closer

to 40% because of unavoidable stray inductances in the feed system. Furthermore, the

analysis shows that a fraction of a current cycle will usually impart less than the same

fraction of this maximum energy. Therefore, we must design our gun so that it is at

least long enough for the plasma to be accelerated for a minimum of one current cycle,

approximately 10 ts, which gives a typical length of 50 cm.

These comments reflect the direction of our intended research. We would like to

understand better the resulting evolution of the plasma once it leaves the gun. The fea-

tures of the gun that will ultimately limit its desirable characteristics are still obscure,

but will be studied. Also, we would like to investigate further the nature of the break-

down in the gun to determine the finite mass of the current sheath, which because of

"snowplowing" effects may be a limiting factor for the ultimate attainable velocities. All

of these features must be understood before a suitable injection device for Alcator can

be proposed.

L. D. Smullin, S. P. Hirshman
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2. ENERGY CONSIDERATIONS RELEVANT TO KINK MODES

AND TO THEIR FEEDBACK CONTROL

In previous Quarterly Progress Reports1 stability criteria for kink modes that

included feedback effects were presented. Standard MHD techniques and a new model

derived in terms of particle drifts were employed. We now report another approach

in which we attempt to compute changes in kinetic and magnetic energy. We invoke

conservation of energy to obtain a stability criterion and to find externally imposed feed-

back fields for feedback stabilization. We obtain expressions for the energy of the

kink modes and reveal difficulty with this method. Finally, we consider kink modes in

a rotating plasma. We find that action (wave energy over frequency) is conserved and

that propagating waves can be negative-energy modes; in this case resistive walls cause

wave growth. The resistive wall damping and growth rates are computed.

The energy viewpoint presented here allows us to identify the sources of instability

and illustrates the role of feedback as a stabilizing energy source. We take the dif-

ference between the energy in a control volume that corresponds to the perturbed plasma

volume at time t and the energy in the unperturbed volume, and use Poynting's vector

to keep track of the energy flow in and out of this volume. This approach, as opposed

to using Bernstein's energy principle2 directly, is a convenient way to include an

external energy source such as our feedback coils, and to compute the energy required

by the feedback system.

A difficulty with this approach is in accounting for second-order quantities, whose

product with zero-order quantities may or may not make a negligible contribution to

the change in energy. Interestingly, if they are dropped and we keep only zero- and

first-order fields, we recover the terms of Bernstein's energy principle. Thus far,

we have not estimated the size of the products of zero- and second-order terms, and

hence we cannot identify all energy sources individually. Instead we have the "arti-

ficial energy" of the usual energy principle. Nevertheless, we can find a stability

criterion with feedback and give order-of-magnitude energy requirements for feedback

systems.

Statement of the Problem

The plasma, with radius a, is cylindrical, and carries both distributed and sheet

currents. The distributed current has a uniform current density, jO, out to r = a, and

is a fraction, f, of the total current I . A sheet current at r = a carries (1-f) of thez
total current. Then the azimuthal field B@ isr

f-rB r <aa a
BO  (1)

B r>a
r a
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where B = z Thus, f = 1 corresponds to a flat current profile, f = 0 corresponds
a 2 ra

to a sheet pinch, f < 1 corresponds to a flat current distribution with a small skin cur-

rent, and f > 1, in some sense, corresponds to a decreasing current distribution.

Feedback System

The kink modes and the feedback system are shown in Fig. XIII-11. The kink modes

are helical perturbations about the plasma column. The helical feedback coils have the

CYLINDRICAL PLASMA COLUMN
WITH CURRENT Iz \

HELICAL PLASMA FEEDBACK CURRENTS
PERTURBATION FEEDBACK CURRENTS

OR
.eimg - ikzz yt IMAGE CURRENTS

HERE m =3, n = k R = I, y = GROWTH RATEz

Fig. XIII-11. Kink modes and feedback system.

B Pf K [FUNCTION OF GEOMETRY

for wall at r =b

Bf = Kf [(a/b) m -l]

B im- ikzzeyt

BFe

Fig. XIII-12. Kink modes and feedback field. Bf is the externally
produced vacuum field at r = a.
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same pitch as the perturbation. These coils carry feedback currents that are spatially

and temporally like the image currents on a conducting wall, except that their amplitude

and phase relative to the perturbation are now kept arbitrary.

We give all of our results (Fig. XIII-12) in terms of the feedback field Bf, the azi-

muthal component at r = a of the vacuum field produced by the feedback current Kf. In

this way, details of the geometry of the external feedback coils and walls do not enter

into the equations. From the requirements on Bf, we can compute current or gain

requirements for any particular external geometry and sensing arrangement.

Energy Changes

Consider the control volume illustrated in Fig. XIII-13, with its boundary at r =

a + a0(t'=t) exp(im0-ikzz). Here, a0(t') is the magnitude of the radial component

of the displacement vector 5 at r = a and at time t' and has the time dependence e. t

At time t' = t, the boundary of the control volume coincides with the perturbed plasma-

vacuum interface.

CONTROL VOLUME

BOUNDARY OF CONTROL VOLUME

E x B (GIVES ENERGY OUTFLOW)

Fig. XIII-13. Control volume and energy outflow.
W 2 = increase in magnetic energy within volumeAB 2

ftoo dt' surface

WAKE = increase in kineti

growing waves, W

tNote: Only
Note: Only j dt' jf-asurface

We integrate the

-oo to t. This gives

1"IS 1EX B .

c energy within volume for

AB2 + WKE 
= 0.

AB

dS(l EXB) contains Bf.
dS f1EX

energy conservation equation over this volume and over time t' from

AWtotal dV + dt' F • dS = 0, (2)

where AWtotal is the change in the total energy density in fields and particles between
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t' = -oo and t' = t, and F is the Poynting flow of electromagnetic energy plus the flow

of particle energy.

This expression can be simplified in several ways. First, we neglect the stored

electrostatic energy and hence rule out interchange flutes. Second, we assume a

divergence-free surface perturbation so that there is no change in the stored thermal

energy. Finally, the flow of energy carried across the bounding surface averages to

zero because there is as much flux leaving the surface at the bulges as there is entering

at the depressions. With these simplification Eq. 2 becomes

B dV + A p 2 dV + s dt dS = 0,2  ~ j1 2  XB dS =,

where B is the total magnetic field, p is the mass density, E the electric field, and

v the fluid velocity.

Expanding the fields and retaining only terms to second order in the fields

gives

2 B B B0  B
I ddV + +dV + I py 2 dV

211d0 19 0 1 0 2

t E 1 X B 0  E1XB1 2 EXB0
: - dt' + + - dS (3)

o -10 10 110

where , is the magnitude of the displacement vector , and the time dependence e t '

is used. The difficulty with this method becomes apparent here, since second-order

field quantities are required. By dropping terms with second-order fields, we recover

all terms of the Bernstein energy conservation equation, as we will show. For the

moment, we compute the five remaining terms.

Using the displacements 3 appropriate to modes having k a << 1,
z

r =(r/a)m-1 a = -i

z - 0,

we find that WKE' the stored kinetic energy per unit length in the plasma motion from

E X B drifting, is
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WKE a dr r dO - py22 2-r py a 0( -\
KE 0 0 2 0 2 a0 . a

2
m py2a 2) (4)

Next we compute WBI1' the change in magnetic energy arising from the square of

the first-order magnetic field, a positive quantity. The perturbed field B 1 is

Blr = ikllBg r

B10 = ikliB~0 - r ar(B/r) B

B = ikB -B ( B B) - BV- ,
1 z 1z r z r z

where kl is

k =mB kBz)/Bli \ r 0 z

and B is B 0 . Letting kz = n/R and aBz/RBa qa and noting that inside the plasma

Be = fBa(r/a), we have

k = (fm-nqa)(Ba/aB).

For this current distribution k11B is independent of radius, and B 1 I = k lBa 0 (r/a)m-

and WB11 is

WB =  dr r d (fm -nqa 2 2
d Z10 a 2

TaO (fmnqa) 2 a (5)

m 240

Now, to compute WB0 1 = f B 0  B 1/ 0 , we note that the integration in azimuth is

alternatively positive and negative except in the small region within a of the boundary.

Within this region, the magnetic field 6B attributable to the current strip [0IA a reverses

direction in that region as the current strip is moved out to the perturbed boundary. Thus

WB0 1 is quadratic in a0', and we have
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(B)o
WB01 2 6 dA

BOI ( 11

S 2T/2m
= m [ad5 a cos mO]a0O

2 6B

where

6 - B = -B B
0 k

and

0 0ja0 cos mO
fBa(~a 0 /a) cos mO

with k 11B as given above, and k - m/a.

BTraO
W O

BO1 m

Thus we have

2a S

fB2n

2(fm-nqa
20)

We next define WEll as the time integral of the Poynting flow E 1 X Blv across the

boundary. Here, Blv = Vp is the perturbed magnetic field on the vacuum side of the
1

boundary. The potential has been computed previously. We found that

= -ri (ik 1 +iB)] ()m -_ [Im 11 a f r m iBf] ()
f b

The field component E l in the 0 -z plane is given by

Y a0B exp[(im -ik zz) + y(t'-t),

and is perpendicular to B

B.,iv we have

Wt 2=
W E dt'

_ 01 10

1

0

O" Since E 1 X Blv is ya B times the parallel component of

a d( B 1 )
g0

a dO e
[L

0

[y Bik l1].
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Note that ik B is the radial component of B , -11 a iv 8 r

But

a' = m (klB)2 +2(kiB)Bf a0 cos mO

so that

a0 a Bf/ a
WE11 m (m-nq) 2 + 2Ell m 2 Ba/ai a2 r~mnqa~ +2---a

El 2 1g 0
a de (¢ ')Ir=a.

(m-nq a)J

The feedback field Bf enters only in this term.

To compute WE01' the integral of El X B0, we again find that the integral averages

nearly to zero and is second-order in aO0 There is no first-order contribution because

with pressure continuity across the interface, E 1 changes sign azimuthally and as much

energy drifts in as out. There is a second-order contribution, however, because of

gradients in zero-order fields.

Since the gradients are in Be, to compute E1 X B0, we need E1z multiplied by
( a-- r=a+ ' where Eiz =(a B)(B /B) or y~ aB, and hence0 r=a+a a 0 a e, - a

WE01 =*
1 -0

dt ' I 2
T a dO aB r B r=a+' 0 a 0)[ r a r=at-5 (9)

Using the previous formulas for B (r), we have, for gr > 0,

aBRe r ar B0e r=a+a

and for r < 0

aBo [ r 0 r=a+

- 2B /a,a a

S22f2 2B /a.
a a

The integral over t' gives 1/2y-, and so we have

1 S02Tr/2m
WE01 2 m

0

2  2 2) rT/m

d aO 
2+r/2m

dO a cos 2 mO(f2B2

ma O [m(1f2) B2 /2 0 ]. (10)
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We summarize the results in terms of W 0 , with

WO = (2nR)(ra2 )(B2/2i 0 )

This energy

(20/a2)/m.

is roughly (a2 0 /a 2 ) times the energy stored in the azimuthal magnetic field.

The energy components are then

WKE OP 2a2/B2 WO

WWBi 1 = (fm-nqa 2 W 0WB01 = -Zf(fm-nqa) W0

WE l = (m-nqa ) 2 + 2(m-nq a )

Bf/ a
Ba/aj

WE01 = -m(l-f ) W 0 .

We can write these terms more conveniently by defining

WB B01 +  Bl

E E01 Ell'

and then

WB + WE = W 2 = WO

where

(fm-nqa ) 2 - 2f(fm-nqa ) + (m-nqa )2

+ 2(m-nqa) -a m(l-f2).
B /a

We set WKE + W to zero and derive the dispersion relation
B

Z= - B /p Oa 2 .
'Y -P
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For stability we need p > 0; therefore, in order for the kinetic energy to increase,

there must be an accompanying decrease in WAB 2 . Some numerical values for Bf and

WAB2 relevant to the Alcator experiment for the most unstable qa values are as follows.

For p > 0, Bf, the feedback field at r = a, must be

2(fm-nq) + (1-f) m
Bf > (kz a ) B z  1 - (m-1) . . . .

L 2(m-nqa) nq a

For the m = 1 mode, the required value of Bf is not only independent of f but also of

Ba and hence of the current I z . This independence with respect to Iz can be traced to

the increased angle between the perturbation and the field line, which provides the
increased requirement on E l X B without requiring Bf to increase. For R = 0. 5 m

and B = 10 5 G,z

W AB2 W 0  -(0. 5/m 3 ) X ( in cm) kJ
AB

Bf " k B a 2 X ( in cm) kG.

Thus, we recover the dispersion relation (Eq. 19) which was obtained previously

without feedback by Shafranov, 4 whose notation for f we used. We also recover the
known dispersion relations for a flat current distribution (if we set f = 1) and for a sheet
pinch (if we set f = 0). Further wall stabilization corrections can be obtained if we set
B =B wall, where

(a/b) 2 m
B = B ((a/a)(m-nq a) m' (20)

wall a1 - (a/b)

which is the expression for Bf resulting from the image currents that flow naturally

on a conducting wall.

The rather natural division into stored energy within the plasma plus the energy sup-
plied to the vacuum region outside the plasma adds some clarity and insight to the phys -
ical concepts. Also, the use of Poynting flow does allow us to include an energy source
in our feedback system. This is the source that complicates that part of the usual energy
principle involving an integration over the vacuum region.

Our method fails, however, since we are now forced to apply the Bernstein energy
principle to demonstrate that our total energy (excluding second-order fields) is con-
served. The only advantage of our method is to show the difference between the small-
signal energy used in the Bernstein principle and the actual energies in this problem.
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To apply the Bernstein energy principle we use an intermediate form,2 and write

the change in potential energy 6W (our W 2). We use the notation of Bernstein and
AB

his co-workers:

6W= 1 I dT 2
2 i0

d dT 0j Q X

1^ A
1 do- (n - )B • curl A
2[

0  

.

+2 d -(n )2 n grad + - BI 2

+- dT {yp(div ) + (div )( grad p) - grad ) div (p)},

where dT and dcr correspond to integrations over the plasma volume and over the plasma

surface, respectively, and the circumflex denotes vacuum values. Other quantities are

defined in the following comments on these terms.

The first term is WBll, since Q = B 1 . The second term, involving the zero-order

current density j is our WB01, although the correspondence is not as obvious as for

the first term. The difference in viewpoint is that here (j XQ) - _ is a J X B force X a

distance while our 2B 1  B0/2i0 is the resultant energy change after the displacement.

We get the same result in both cases. That is, for k za << 1, j and Q X are essentially

parallel everywhere; jL 0j I is 2B 0 /r or 2fB /a; IQ X I is kIlBa 2 or (Ba/a)(fm-nqa )
2 (r/a)2m-2. Thus the term j Q X is (-2f)/(fm-nqa ) X the first term, as we have

already found.

The third term is our term W Here, V X A is our B in the vacuum region
A El1 Iv

and (n. )B/2[ 0 is our E 1 /2"yN 0 . Since E 1 is perpendicular to the zero-order field
A A

B0 , the angle between E 1 and B 1 is complementary to the angle between B 1 and BO; and

so the sine of the angle in the vector product E 1 X B 1 is the same as the cosine of the
A 1 1 A

angle in B l 's dot product with B 0 . Alternatively, we could note that (n. )B. V X A goes
AA

to (n.)Bik (with V X A = V ), and, by the field-freezing condition, (n*g)ik lB is

Brl = = '. Thus this third term becomes (1/2 0 ) f d( ', which is just our inte-

gral. 2

The fourth term is our term WE01. Here grad p+ 12 0 is the jump in

EO1 2[0
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grad (p+B2/2\ 0 across the boundary. For the current considered here (constant

current density + a sheet current at r = a), the equilibrium pressure is

(1-f2)B2/211 0 + ZB/2 0 (1-(r/a)2) r < a

p =
0 r>a

and

2 2B 2(r/a) 2 /2[0 r < a
B

2i0 B 2a(a/r) 2 /ai 0  r> a

Hence

B2 f2 B 2 2B2

<grad (p+B /20 ) -Ia -2 a + a
\a p0 ai0 ap 0

S-(lf 2 ) (B2/a 0 ). (21)

Thus, the fourth term is "02 rad6O aO cos2 m0(1-f2) -B /2ai 0) which gives our result,

(1-f 2 ) (-r 2 0 ] /2 0
a a/2 0"

The last term drops out because there is no 4 (c is the external potential energy,

for example, gravity) and we have taken (V - ) to be zero.

This correspondence between our formulation and the Bernstein result does not

resolve our initial question of second-order forces. We were not attempting to compute

a small-signal energy in terms of first-order quantities but rather the total change in

system energy. We have not yet demonstrated whether the terms with E 2 X B 0 and

B 2 * B0 are third-order in a0 when volume-averaged, or whether they are second-order

and negligible, or second-order and should be included.

In the last case we can claim that their sum is zero by invoking our conservation

statement for the sum of the seven original terms, together with the conservation of the

terms in the Bernstein conservation statement.

Wall Effects

A conducting wall at r = b provides some feedback stabilization. If the wall resistiv-

ity r~ is zero, the flow of image currents on the wall keeps the perturbed radial field

at the wall zero. These currents produce the feedback field of Eq. 20. Using this value,

we find that the dispersion relation is
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Y2 = 2 2/pia 2

where

(a/b) 2 m

P0 = (fm-nqa 2 - 2 f(fm-nqa) + (m-nqa)2 2m - m(-f 2 )  (22)
1 - (a/b) 2m

Next, we assume that the walls have a small but finite resistivity. Unstable modes

are not significantly affected by finite iT but the otherwise stable propagating modes will

damp at a rate (-y N), where for these propagating modes we let y = y - iw. For r = 0,

these modes are characterized by P0 > 0 and c = o0 * 0, where P0 and o are the = 0

values of p and o. For Tr = 0, damping occurs because of the "R/wL" phase lag of the

image currents with respect to the propagating plasma wave. This phase lag, l/wT

(where T is the "L/R" time for these image currents on a wall at r = b outside a perfect

conductor at r = a) is given by

Tj m/ b 2
1 1 Lo(m/b)-  (a/b) (23)

with 8 the skin depth. For small r, Bf and P have essentially the -q = 0 magnitudes,

Bf, 7]=0 and P0, but the phase lag gives them, a small imaginary part. That is,

B = Bf, [ 1-i-

and

P = P0  nq - i 1 (mnqa2 (24)
0T a)? 1-(a/b)2m

Using this p in y- = -P and noting that w o , we obtain yrl from the imaginary

part of this equation

1 (m/b( 2(a/b)m  (25)

For (1/6) of 10-42 (corresponding to the resistivity of copper and 105 Hz fre-
-1

quencies) and for b = 0. 2 m, the damping time y is
71
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-1 O b 1 rb m _ am]

n 2(n/6) m a b b

-3 m/ m P0 seconds.

Thus, the damping time is milliseconds for low m number modes (for (b/a)2m/m ~ 1)

having P0 ~ 1. (That is, for modes that are within a few wavelengths of the wall and

that are not too far from marginal stability.)

Resistive growth rather than damping can occur if the plasma has a zero-order rota-

tion, such as may be induced by a radial electric field, as has been examined recently

by Rutherford, et al.5 Growth occurs when the phase velocity between Bf and the plasma

wave changes sign. This sign change occurs if the rotation is opposite to and faster

than the phase velocity. Then the phase lag of Bf along the wall is a phase lead as

viewed from the plasma, and this lead produces growth.

We have also examined this problem in terms of energy. Since we know the magnitude

of the image currents on the wall, we can compute the rate of wall heating caused

by these currents. This heating rate equals the rate at which wave energy decreases.

This decrease represents damping if the wave energy is positive and growth if the

wave energy is negative.

The wave energy depends on the frame of reference. In the frame of the wall the

component WKE of the wave energy picks up an additional contribution when rotation is
2added. There is now a zero-order velocity v 0 so that in addition to pv 1 we have a con-

tribution from pv0 1 , which can be a positive or negative contribution, depending on

whether the wave induces a net increase or a net decrease in the kinetic energy stored

in rotation. By including this term, we can show that the kink modes are action con-

serving, where action is defined as the observed wave energy divided by the observed

wave frequency. Thus, for modes whose phase velocity has been reversed in direction

by the rotation, the wave energy is negative.

Thus growth is expected from the viewpoint of energy conservation too. For

modest rotational speeds, it is the modes near marginal stability whose phase veloc-

ity might be reversed by the rotation, since their phase velocity relative to the plasma

is small. From either calculation, we obtain the growth rate

= + 00 (26)
'YrT--T 0 m 00=0 M O 2 2

a 0Ba/P Oa

where y , v 0 0 =0 is the value derived for no rotation, and v0 0 is the azimuthal rotational

velocity at r = a.
R. S. Lowder, K. I. Thomassen
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RESEARCH OBJECTIVES

The physics of high-temperature plasmas is of primary importance in the problem
of controlled thermonuclear fusion and to astrophysics in general. The main point of
interest for the controlled thermonuclear program is the production and magnetic con-

finement of dense plasmas (n > 101 4 particles/cm 3 ) with thermal energies in excess
of 5 keV. On the other hand, important astrophysical questions related to the under-
standing of high-temperature plasma dynamics are the nature of thermal and nonthermal
radiation mechanisms from the magnetosphere of collapsed stars (x-ray stars and pul-
sars are thought to be associated with this class), the development of solar flares, and
so forth.

Considerable experimental and theoretical effort has been undertaken in order to
understand the dynamics of plasmas in the regimes mentioned above, and in particular
their transport properties. In fact, it is recognized that in conditions wherein the two-
body collision mean-free paths are very long the transport coefficients of a plasma
are determined, for the most part, by the collective modes that are excited in it rather
than by two-body collisions.

In magnetically confined plasmas at high temperatures two classes of particles may
be distinguished: particles that are trapped in the local wells of the inhomogeneous
magnetic field and circulating particles that sample the entire length of the lines of force.
As a result, new collective modes can be generated and have an important effect on the
stability and transport properties of the plasma that is being considered.

To investigate these and other aspects, a sequence of experimental apparatus is being
put into operation, in particular, a linear quadrupole that is the simplest two-dimensional
configuration for the study of trapped-particle dynamics, and a relatively large toroidal
configuration (Alcator) designed to achieve new plasma regimes and to analyze new
methods of plasma heating. A more advanced toroidal configuration capable of sus-
taining high plasma currents is in the design stage.

This work was supported by the U. S. Atomic Energy Commission (Contract
AT( 11-1)-3070).

tDr. D. Bruce Montgomery is at the Francis Bitter National Magnet Laboratory.
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A special experimental program is being organized to investigate the x-ray, optical,
and infrared emission from Alcator. This is in view of its astrophysical implications
and of the importance that radiation has in the energetic balance of thermonuclear
plasmas.

B. Coppi
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