2,365 research outputs found

    Hard spectra and QCD matter: experimental review

    Full text link
    The most significant experimental results on hadron spectra at large transverse momentum available at the time of Quark Matter 2004 conference are reviewed. Emphasis is put on those measurements that provide insights on the properties of the QCD media, ``Quark Gluon Plasma'' and ``Color Glass Condensate'', expected to be present in nucleus-nucleus collisions at collider energies.Comment: 2 plots updated. Minor changes in tex

    On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density

    Get PDF
    We are concerned with the long time behaviour of solutions to the fractional porous medium equation with a variable spatial density. We prove that if the density decays slowly at infinity, then the solution approaches the Barenblatt-type solution of a proper singular fractional problem. If, on the contrary, the density decays rapidly at infinity, we show that the minimal solution multiplied by a suitable power of the time variable converges to the minimal solution of a certain fractional sublinear elliptic equation.Comment: To appear in DCDS-

    Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets

    Get PDF
    A measurement of beam-helicity asymmetries for single-hadron production in deep-inelastic scattering is presented. Data from the scattering of 27.6 GeV electrons and positrons off gaseous hydrogen and deuterium targets were collected by the HERMES experiment. The asymmetries are presented separately as a function of the Bjorken scaling variable, the hadron transverse momentum, and the fractional energy for charged pions and kaons as well as for protons and anti-protons. These asymmetries are also presented as a function of the three aforementioned kinematic variables simultaneously

    Transverse-target-spin asymmetry in exclusive ω\omega-meson electroproduction

    Get PDF
    Hard exclusive electroproduction of ω\omega mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive πω\pi\omega transition form factor.Comment: DESY Report 15-14

    Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons

    Get PDF
    A comprehensive collection of results on longitudinal double-spin asymmetries is presented for charged pions and kaons produced in semi-inclusive deep-inelastic scattering of electrons and positrons on the proton and deuteron, based on the full HERMES data set. The dependence of the asymmetries on hadron transverse momentum and azimuthal angle extends the sensitivity to the flavor structure of the nucleon beyond the distribution functions accessible in the collinear framework. No strong dependence on those variables is observed. In addition, the hadron charge-difference asymmetry is presented, which under certain model assumptions provides access to the helicity distributions of valence quarks

    INFN What Next: Ultra-relativistic Heavy-Ion Collisions

    Full text link
    This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target programme using the LHC ion beams and on the Future Circular Collider.Comment: 99 pages, 56 figure

    Performance of prototypes for the ALICE electromagnetic calorimeter

    Full text link
    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4×44\times4 array of final design modules showed an energy resolution of about 11% /E(GeV)\sqrt{E(\mathrm{GeV})} \oplus 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm \oplus 5.3 mm /E(GeV)\sqrt{E \mathrm{(GeV)}}. For an electron identification efficiency of 90% a hadron rejection factor of >600>600 was obtained.Comment: 10 pages, 10 figure

    Bose-Einstein correlations in hadron-pairs from lepto-production on nuclei ranging from hydrogen to xenon

    Get PDF
    Bose-Einstein correlations of like-sign charged hadrons produced in deep-inelastic electron and positron scattering are studied in the HERMES experiment using nuclear targets of 1^1H, 2^2H, 3^3He, 4^4He, N, Ne, Kr, and Xe. A Gaussian approach is used to parametrize a two-particle correlation function determined from events with at least two charged hadrons of the same sign charge. This correlation function is compared to two different empirical distributions that do not include the Bose-Einstein correlations. One distribution is derived from unlike-sign hadron pairs, and the second is derived from mixing like-sign pairs from different events. The extraction procedure used simulations incorporating the experimental setup in order to correct the results for spectrometer acceptance effects, and was tested using the distribution of unlike-sign hadron pairs. Clear signals of Bose-Einstein correlations for all target nuclei without a significant variation with the nuclear target mass are found. Also, no evidence for a dependence on the invariant mass W of the photon-nucleon system is found when the results are compared to those of previous experiments
    corecore