6 research outputs found
Accessing the population of high-redshift Gamma Ray Bursts
Gamma Ray Bursts (GRBs) are a powerful probe of the high-redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and Îł-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (EpeakâLiso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2â5 keV energy band reaching a sensitivity, corresponding to a fluence, of âŒ10â8 erg cmâ2 is expected to detect â40âGRBsâyrâ1âsrâ1 at z â„ 5 (â3âGRBsâyrâ1âsrâ1 at z â„ 10). Once high-zâGRBs are detected the principal issue is to secure their redshift. To this aim we estimate their NIR afterglow flux at relatively early times and evaluate the effectiveness of following them up and construct usable samples of events with any forthcoming GRB mission dedicated to explore the high-z Universe
Anatomy of a dark burst - The afterglow of GRB 060108
We present a multiwavelength study of GRB 060108 â the 100th gamma-ray burst discovered by Swift. The X-ray flux and light curve (three segments plus a flare) detected with the X-ray Telescope are typical of Swift long bursts.
We report the discovery of a faint optical afterglow detected in deep BVRiâČ-band imaging obtained with the Faulkes Telescope North beginning 2.75 min after the burst. The afterglow is below the detection limit of the Ultraviolet/Optical Telescope within 100 s of the burst, while is evident in K-band images taken with the United Kingdom Infrared Telescope 45 min after the burst. The optical light curve is sparsely sampled. Observations taken in the R and iâČ bands can be fitted either with a single power-law decay in flux, F(t) âtâα where α= 0.43 ± 0.08, or with a two-segment light curve with an initial steep decay α1 < 0.88 ± 0.2, flattening to a slope α2⌠0.31 ± 0.12. A marginal evidence for rebrightening is seen in the iâČ band.
Deep R-band imaging obtained âŒ12 d post-burst with the Very Large Telescope reveals a faint, extended object (R⌠23.5âmag) at the location of the afterglow. Although the brightness is compatible with the extrapolation of the slow decay with index α2, significant flux is likely due to a host galaxy. This implies that the optical light curve had a break before 12 d, akin to what observed in the X-rays.
We derive the maximum photometric redshift z < 3.2 for GRB 060108. We find that the spectral energy distribution at 1000 s after the burst, from the optical to the X-ray range, is best fitted by a simple power law, FÎœâÎœâÎČ, with ÎČOX= 0.54 and a small amount of extinction. The optical to X-ray spectral index (ÎČOX) confirms GRB 060108 to be one of the optically darkest bursts detected. Our observations rule out a high redshift as the reason for the optical faintness of GRB 060108. We conclude that a more likely explanation is a combination of an intrinsic optical faintness of the burst, a hard optical to X-ray spectrum and a moderate amount of extinction in the host galaxy
A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations
The joint detection of gravitational waves (GWs) and electromagnetic radiation from the binary neutron star (BNS) merger GW170817 has provided unprecedented insight into a wide range of physical processes: heavy element synthesis via the r-process; the production of relativistic ejecta; the equation of state of neutron stars and the nature of the merger remnant; the binary coalescence timescale; and a measurement of the Hubble constant via the "standard siren" technique. In detail, all of these results depend on the distance to the host galaxy of the merger event, NGC 4993. In this Letter we measure the surface brightness fluctuation (SBF) distance to NGC 4993 in the F110W and F160W passbands of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope (HST). For the preferred F110W passband we derive a distance modulus of mag, or a linear distance d = 40.7 ± 1.4 ± 1.9 Mpc (random and systematic errors, respectively); a virtually identical result is obtained from the F160W data. This is the most precise distance to NGC 4993 available to date. Combining our distance measurement with the corrected recession velocity of NGC 4993 implies a Hubble constant H 0 = 71.9 ± 7.1 km sâ1 Mpcâ1. A comparison of our result to the GW-inferred value of H 0 indicates a binary orbital inclination of i gsim 137°. The SBF technique can be applied to early-type host galaxies of BNS mergers to ~100 Mpc with HST and possibly as far as ~300 Mpc with the James Webb Space Telescope, thereby helping to break the inherent distance-inclination degeneracy of the GW data at distances where many future BNS mergers are likely to be detected
Discovery of the nearby long, soft GRB100316D with an associated supernova
We report the Swift discovery of the nearby long, soft gamma-ray burst GRB 100316D, and the subsequent unveiling of its low-redshift host galaxy and associated supernova. We derive the redshift of the event to be z= 0.0591 ± 0.0001 and provide accurate astrometry for the gamma-ray burst (GRB) supernova (SN). We study the extremely unusual prompt emission with time-resolved γ-ray to X-ray spectroscopy and find that the spectrum is best modelled with a thermal component in addition to a synchrotron emission component with a low peak energy. The X-ray light curve has a remarkably shallow decay out to at least 800 s. The host is a bright, blue galaxy with a highly disturbed morphology and we use Gemini-South, Very Large Telescope and Hubble Space Telescope observations to measure some of the basic host galaxy properties. We compare and contrast the X-ray emission and host galaxy of GRB 100316D to a subsample of GRB-SNe. GRB 100316D is unlike the majority of GRB-SNe in its X-ray evolution, but resembles rather GRB 060218, and we find that these two events have remarkably similar high energy prompt emission properties. Comparison of the host galaxies of GRB-SNe demonstrates, however, that there is a great diversity in the environments in which GRB-SNe can be found. GRB 100316D is an important addition to the currently sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned
THESEUS: a key space mission for Multi-Messenger Astrophysics
The recent discovery of the electromagnetic counterpart of the gravitational wave source GW170817, has demonstrated the huge informative power of multi-messenger observations. During the next decade the nascent field of multi-messenger astronomy will mature significantly. In 2030s, third generation gravitational wave detectors will be roughly ten times more sensitive than the current ones. At the same time, neutrino detectors currently upgrading to multi km^3 telescopes, will include a 10 km^3 facility in the Southern hemisphere that is expected to be operational during the thirties. In this review, we describe the most promising high frequency gravitational wave and neutrino sources that will be detected in the next two decades. In this context, we show the important role of the Transient High Energy Sky and Early Universe Surveyor (THESEUS), a mission concept proposed to ESA by a large international collaboration in response to the call for the Cosmic Vision Programme M5 missions. THESEUS aims at providing a substantial advancement in early Universe science as well as playing a fundamental role in multi-messenger and time-domain astorphysics. It will operate in strong sinergy with future gravitational wave and neutrino detectors as well as major ground- and space-based telescopes. This review is an extension of the THESEUS white paper (Amati et al., 2017), in light of the discovery of GW170817/GRB170817A that was announced on October 16th, 2017
The THESEUS space mission concept: science case, design and expected performances
THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5â1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift âŒ10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late â20s/early â30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA)