1,633 research outputs found

    Price Leadership

    Get PDF

    3+1 Approach to the Long Wavelength Iteration Scheme

    Full text link
    Large-scale inhomogeneities and anisotropies are modeled using the Long Wavelength Iteration Scheme. In this scheme solutions are obtained as expansions in spatial gradients, which are taken to be small. It is shown that the choice of foliation for spacetime can make the iteration scheme more effective in two respects: (i) the shift vector can be chosen so as to dilute the effect of anisotropy on the late-time value of the extrinsic curvature of the spacelike hypersurfaces of the foliation; and (ii) pure gauge solutions present in a similar calculation using the synchronous gauge vanish when the spacelike hypersurfaces have extrinsic curvature with constant trace. We furthermore verify the main conclusion of the synchronous gauge calculation which is large-scale inhomogeneity decays if the matter--considered to be that of a perfect-fluid with a barotropic equation of state--violates the strong-energy condition. Finally, we obtain the solution for the lapse function and discuss its late-time behaviour. It is found that the lapse function is well-behaved when the matter violates the strong energy condition.Comment: 21 pages, TeX file, already publishe

    Rapid seismic ray tracing in a spherically symmetric earth via interpolation of rays

    Get PDF
    From the equations for seismic ray tracing in a general three-dimensionally heterogeneous isotropic elastic medium, we derive equations appropriate for a spherically symmetric earth, with path length as the independent parameter. Numerical integration of these equations, plus their derivatives with respect to take-off angle, leads to a set of reference rays for the direct P phase. From a modest number of reference rays, which need be computed only once for a given earth model, ray path coordinates and travel times can be rapidly and accurately computed by Hermite cubic interpolation using specific algorithms which we outline. Because of the speed of the interpolation and the explicit parameterization in terms of path length, this technique is ideally suited for use in a tomographic inversion of global P-wave travel-time observations to obtain an estimate of lateral velocity heterogeneity in the mantle

    Cosmological Two-stream Instability

    Get PDF
    Two-stream instability requires, essentially, two things to operate: a relative flow between two fluids and some type of interaction between them. In this letter we provide the first demonstration that this mechanism may be active in a cosmological context. Building on a recently developed formalism for cosmological models with two, interpenetrating fluids with a relative flow between them, we show that two-stream instability may be triggered during the transition from one fluid domination to the other. We also demonstrate that the cosmological expansion eventually shuts down the instability by driving to zero the relativeflow and the coupling between the two fluids.Comment: 9 pages, 3 figures. Final version that is publishe

    Measuring Population Health Using Electronic Health Records: Exploring Biases and Representativeness in a Community Health Information Exchange

    Get PDF
    Assessment is a core function of public health. Comprehensive clinical data may enhance community health assessment by providing up-to-date, representative data for use in public health programs and policies, especially when combined with community-level data relevant to social determinants. In this study we examine routinely collected and geospatially-enhanced EHR data to assess population health at various levels of geographic granularity available from a regional health information exchange. We present preliminary findings and discuss important biases in EHR data. Future work is needed to develop methods for correcting for those biases to support routine epidemiology work of public health

    Posterior Probability Modeling and Image Classification for Archaeological Site Prospection: Building a Survey Efficacy Model for Identifying Neolithic Felsite Workshops in the Shetland Islands

    Get PDF
    The application of custom classification techniques and posterior probability modeling (PPM) using Worldview-2 multispectral imagery to archaeological field survey is presented in this paper. Research is focused on the identification of Neolithic felsite stone tool workshops in the North Mavine region of the Shetland Islands in Northern Scotland. Sample data from known workshops surveyed using differential GPS are used alongside known non-sites to train a linear discriminant analysis (LDA) classifier based on a combination of datasets including Worldview-2 bands, band difference ratios (BDR) and topographical derivatives. Principal components analysis is further used to test and reduce dimensionality caused by redundant datasets. Probability models were generated by LDA using principal components and tested with sites identified through geological field survey. Testing shows the prospective ability of this technique and significance between 0.05 and 0.01, and gain statistics between 0.90 and 0.94, higher than those obtained using maximum likelihood and random forest classifiers. Results suggest that this approach is best suited to relatively homogenous site types, and performs better with correlated data sources. Finally, by combining posterior probability models and least-cost analysis, a survey least-cost efficacy model is generated showing the utility of such approaches to archaeological field survey

    Temporal changes in fruit production between recurrent prescribed burns in pine woodlands of the Ouachita Mountains

    Get PDF
    The use of prescribed fire is integral to the restoration of open woodlands and savannas, including shortleaf pine (Pinus echinata) woodlands in the Ouachita Mountains of Oklahoma and Arkansas. Fire offers many potential benefits to numerous wildlife; however, short-term implications for understory fruit production are not fully understood, especially in stands subjected to frequent, recurrent burns. We examined the effects of dormant season prescribed burns on woody fruit production (kg ha−1) and fruit producing vegetative cover in the understory of restored pine woodlands. We inventoried 32 stands during four temporal periods after dormant season prescribed fires: 1, 2, 3, and 5 growing seasons post-burn. We counted fruit (\u3c2 m above the ground) throughout the summer and visually estimated vegetative cover of fruit producing plants. Fruit production was greatest in the 3rd year (18.2 kg ha−1), followed by 5th (10.9 kg ha−1) and 2nd (9.8 kg ha−1) years after burns. Overall, 87% of total production consisted of three genera: American beautyberry (Callicarpa americana [38%]), Vitis spp. (summer grapes [Vitis aestivalis; 11%] and muscadine grape [V. rotundifolia; 10%]), and Rubus spp. (blackberry [20%] and dewberry [R. flagellaris; 8%]). Production was recorded in 13 of the 14 fruit producing species present during the 5th year post-burn, indicating that production diversity increased over time. Percent cover and species richness (26 taxa) of fruit producing taxa were greatest in the 3rd year post-burn. Taxa such as poison ivy (Toxicodendron radicans) and sumac (Rhus spp.) comprised a sizable percent of coverage (\u3e7% each), but this did not translate into substantial fruit production. American beautyberry and summer grape had both substantial coverage and production. Results suggest that burning on a 3-year rotation maximizes and prolongs fruit production; however, occasional burning on a 5-year rotation will promote a higher diversity of woody mast-producing understory species

    Long-wavelength approximation for string cosmology with barotropic perfect fluid

    Full text link
    The field equations derived from the low energy string effective action with a matter tensor describing a perfect fluid with a barotropic equation of state are solved iteratively using the long-wavelength approximation, i.e. the field equations are expanded by the number of spatial gradients. In the zero order, a quasi-isotropic solution is presented and compared with the general solution of the pure dilaton gravity. Possible cosmological models are analyzed from the point of view of the pre-big bang scenario. The second order solutions are found and their growing and decaying parts are studied.Comment: 19 pages, 1 figur
    corecore