102 research outputs found

    An Integrated Multiscale Method for the Characterisation of Active Faults in Offshore Areas. The Case of Sant\u2019Eufemia Gulf (Offshore Calabria, Italy)

    Get PDF
    Diagnostic morphological features (e.g., rectilinear seafloor scarps) and lateral offsets of the Upper Quaternary deposits are used to infer active faults in offshore areas. Although they deform a significant seafloor region, the active faults are not necessarily capable of producing large earthquakes as they correspond to shallow structures formed in response to local stresses. We present a multiscale approach to reconstruct the structural pattern in offshore areas and distinguish between shallow, non-seismogenic, active faults, and deep blind faults, potentially associated with large seismic moment release. The approach is based on the interpretation of marine seismic reflection data and quantitative morphometric analysis of multibeam bathymetry, and tested on the Sant\u2019Eufemia Gulf (southeastern Tyrrhenian Sea). Data highlights the occurrence of three major tectonic events since the Late Miocene. The first extensional or transtensional phase occurred during the Late Miocene. Since the Early Pliocene, a right-lateral transpressional tectonic event caused the positive inversion of deep (>3 km) tectonic features, and the formation of NE-SW faults in the central sector of the gulf. Also, NNE-SSW to NE-SW trending anticlines (e.g., Maida Ridge) developed in the eastern part of the area. Since the Early Pleistocene (Calabrian), shallow (<1.5 km) NNE-SSW oriented structures formed in a left-lateral transtensional regime. The new results integrated with previous literature indicates that the Late Miocene to Recent transpressional/transtensional structures developed in an 3cE-W oriented main displacement zone that extends from the Sant\u2019Eufemia Gulf to the Squillace Basin (Ionian offshore), and likely represents the upper plate response to a tear fault of the lower plate. The quantitative morphometric analysis of the study area and the bathymetric analysis of the Angitola Canyon indicate that NNE-SSW to NE-SW trending anticlines were negatively reactivated during the last tectonic phase. We also suggest that the deep structure below the Maida Ridge may correspond to the seismogenic source of the large magnitude earthquake that struck the western Calabrian region in 1905. The multiscale approach contributes to understanding the tectonic imprint of active faults from different hierarchical orders and the geometry of seismogenic faults developed in a lithospheric strike-slip zone orthogonal to the Calabrian Arc

    Mid-to-late Holocene upper slope contourite deposits off Capo Vaticano (Mediterranean Sea): High-resolution record of contourite cyclicity, bottom current variability and sandy facies

    Get PDF
    none13noThe upper continental slope offshore Capo Vaticano (southern Tyrrhenian Sea) is characterized by a contourite depositional system with well-developed elongated sediment drifts. This system is related to a northward paleo-bottom current, similar to the present-day modified-Levantine Intermediate Water (modified-LIW) flowing from the Messina Strait. In this work, we show results from an integrated analysis of descriptive oceanography, high-resolution seismic profiles and core data (i.e., grain size, foraminiferal assemblages, tephrostratigraphy and AMS radiocarbon dating) collected from the crest and moat sectors of drift deposits. The studied succession formed since the mid Holocene, under the action of the modified-LIW and the stratigraphic architecture indicates an upslope migration of the moat and rather stable position of the crest sector. Grain-size features recorded from two sediment cores indicate the occurrence of a succession of complete bi-gradational sand-rich contourite sequences. Sandy facies were observed both as lag deposits formed in active moat channel and as coarser intervals of bi-gradational sequences forming drift deposits close to its crest. Their occurrence would highlight that upper slope environments impacted by intermediate water masses and proximal to sandy sources may represent favorable settings for accumulation of sandy sediment. The moat sector is characterized by a more complex stratigraphic record, where either moat sedimentation or lateral deposition of finer sediment occur, suggesting that further investigation is required to better understand this complex element of contourite systems. Based on available age information, some of the bi-gradational sequences probably formed during the Dark Age Cold Period, providing example of a small-scale cyclicity of contourite deposition, likely related to short-term (possibly multicentennial scale) fluctuations of the paleo modified-LIW. According to age constraints and analysis of foraminiferal assemblages, these fluctuations were likely governed by climate variations, with a weaker activity during warmer periods and faster currents during colder events.openMartorelli E., Bosman A., Casalbore D., Chiocci F., Conte A.M., Di Bella L., Ercilla G., Falcini F., Falco P., Frezza V., Gaglianone G., Giaccio B., Mancini M.Martorelli, E.; Bosman, A.; Casalbore, D.; Chiocci, F.; Conte, A. M.; Di Bella, L.; Ercilla, G.; Falcini, F.; Falco, P.; Frezza, V.; Gaglianone, G.; Giaccio, B.; Mancini, M

    The Guadiaro-Baños contourite drifts (SW Mediterranean). A geotechnical approach to stability analysis

    Get PDF
    Two Quaternary plastered contourite drifts, with terraced and low-mounded morphologies, make up the continental slope and base-of-slope in the northwestern Alboran Sea, respectively, between the Guadiaro and Baños turbidite systems, close to the Strait of Gibraltar. Considering their significant lateral extent, the link between the contourite drift deposits and landslides may be particularly important for hazard assessment. The physical properties, composition and geometry of contourite drifts have been proposed as key factors in slope stability, although this relationship still needs to be better constrained. In this work, new in-situ geotechnical data (cone penetration tests; CPTu) has been combined with morphostratigraphic, sedimentological, and (laboratory) geotechnical properties to determine the stability of the Guadiaro-Baños drifts. For the depositional domains of both drifts, the resulting sedimentary and geotechnical model describes low-plasticity granular and silty sands on the erosive terraced domain that evolve seawards to silty and silty-clay deposits with a higher plasticity and uniform geomechanical properties. For the shallower coarse-grained contourite sediments, the cohesion (c') and internal friction angle (ϕ') values are 0–9 kPa and 46–30°, respectively, whereas for the distal fine contourites the undrained shear strength gradient (∇Su) is 2 kPa/m. These properties allow us to establish high factors of safety for all the scenarios considered, including seismic loading. Slope failure may be triggered in the unlikely event that there is seismic acceleration of PGA > 0.19, although no potential glide planes have been observed within the first 20 m below the seafloor. This suggests that the contourite drifts studied tend to resist failure better than others with similar sedimentary characteristics. The interplay of several processes is proposed to explain the enhanced undrained shear strength: 1) the geometry of the drifts, defined by an upper contouritic terrace and lower low-mounded shapes; 2) recurrent low-intensity earthquakes with insufficient energy to trigger landslides, favouring increased strength due to dynamic compaction; and 3) cyclic loading induced by solitons/internal waves acting on the sediment.En prens

    Human Olfactory Bulb Neural Stem Cells (Hu-OBNSCs) Can Be Loaded with Paclitaxel and Used to Inhibit Glioblastoma Cell Growth

    Get PDF
    Exploitation of the potential ability of human olfactory bulb (hOB) cells to carry, release, and deliver an effective, targeted anticancer therapy within the central nervous system (CNS) milieu remains elusive. Previous studies have demonstrated the marked ability of several types of stem cells (such as mesenchymal stem cells (MSCs) to carry and release different anti-cancer agents such as paclitaxel (PTX). Herein we investigate the ability of human olfactory bulb neural stem cells (Hu-OBNSCs) to carry and release paclitaxel, producing effective cytotoxic effects against cancer cells. We isolated Hu-OBNSCs from the hOB, uploaded them with PTX, and studied their potential cytotoxic effects against cancer cells in vitro. Interestingly, the Hu-OBNSCs displayed a five-fold increase in their resistance to the cytotoxicity of PTX, and the PTX-uploaded Hu-OBNSCs were able to inhibit proliferation and invasion, and to trigger marked cytotoxic effects on glioblastoma multiforme (GBM) cancer cells, and Human Caucasian fetal pancreatic adenocarcinoma 1 (CFPAC-1) in vitro. Despite their ability to resist the cytotoxic activity of PTX, the mechanism by which Hu-OBNSCs acquire resistance to PTX is not yet explained. Collectively our data indicate the ability of the Hu-OBNSCs to resist PTX, and to trigger effective cytotoxic effects against GBM cancer cells and CFPAC-1. This indicates their potential to be used as a carrier/vehicle for targeted anti-cancer therapy within the CNS

    Understanding the complex geomorphology of a deep sea area affected by continental tectonic indentation: the case of the Gulf of Vera (Western Mediterranean)

    Get PDF
    We present a multidisciplinary study of morphology, stratigraphy, sedimentology, tectonic structure, and physical oceanography to report that the complex geomorphology of the Palomares continental margin and adjacent Algerian abyssal plain (i.e., Gulf of Vera, Western Mediterranean), is the result of the sedimentary response to the Aguilas Arc continental tectonic indentation in the Eurasian–Africa plate collision. The inden tation is imprinted on the basement of the margin with elongated metamorphic antiforms that are pierced by igneous bodies, and synforms that accommodate the deformation and create a complex physiography. The basement is partially covered by Upper Miocene deposits sealed by the regional Messinian Erosive Surface characterized by palaeocanyons that carve the modern margin. These deposits and outcropping basement highs are then covered and shaped by Plio-Quaternary contourites formed under the action of the Light Intermediate and Dense Deep Mediterranean bottom currents. Even though bottom currents are responsible for the primary sedimentation that shapes the margin, 97% of this region's seafloor is affected by mass-movements that modified contourite sediments by eroding, deforming, faulting, sliding, and depositing sediments. Mass-movement processes have resulted in the formation of recurrent mass-flow deposits, an enlargement of the submarine canyons and gully incisions, and basin-scale gravitational slides spreading above the Messinian Salinity Crisis salt layer. The Polopo, Aguilas and Gata slides are characterized by an extensional upslope domain that shapes the continental margin, and by a downslope contractional domain that shapes the abyssal plain with diapirs piercing (hemi)pelagites/sheet-like turbidites creating a seafloor dotted by numerous crests. The mass movements were mostly triggered by the interplay of the continental tectonic indentation of the Aguilas Arc with sedimentological factors over time. The indentation, which involves the progressively southeastward tectonic tilting of the whole land-sea region, likely generated a quasi-continuous oversteepening of the entire margin, thus reducing the stability of the contourites. In addition, tectonic tilting and subsidence of the abyssal plain favoured the flow of the underlying Messinian Salinity Crisis salt layer, contributing to the gravitational instability of the overlying sediments over large areas of the margin and abyssal plain

    Integration of Remote Sensing and Offshore Geophysical Data for Monitoring the Short-Term Morphological Evolution of an Active Volcanic Flank: A Case Study from Stromboli Island

    Get PDF
    The Sciara del Fuoco (SdF) collapse scar at Stromboli is an active volcanic area affected by rapid morphological changes due to explosive/effusive eruptions and mass-wasting processes. The aim of this paper is to demonstrate the importance of an integrated analysis of multi-temporal remote sensing (photogrammetry, COSMO-SkyMed Synthetic Aperture Radar amplitude image) and marine geophysical data (multibeam and side scan sonar data) to characterize the main morphological, textural, and volumetric changes that occurred along the SdF slope in the 2020–2021 period. The analysis showed the marked erosive potential of the 19 May 2021 pyroclastic density current generated by a crater rim collapse, which mobilized a minimum volume of 44,000 m3 in the upper Sciara del Fuoco slope and eroded 350,000–400,000 m3 of material just considering the shallow-water setting. The analysis allowed us also to constrain the main factors controlling the emplacement of different lava flows and overflows during the monitored period. Despite the morphological continuity between the subaerial and submarine slope, textural variations in the SdF primarily depend on different processes and characteristics of the subaerial slope, the coastal area, the nearshore, and “deeper” marine areas

    Deep Sea Sedimentation

    Get PDF
    This article offers an overview of the main sedimentary systems defining the geomorphology of deep sea environments from low to high latitudes. Mass-transport deposits, turbidite systems, contourites, volcaniclastic aprons, glacial trough mouth systems, carbonate mounds and other bathyal systems, such as pelagites, hemipelagites, mid-ocean channels and polymetallic mineral deposits, are presented with special attention to their morphology, sediments, processes and controlling factors. The integration of the main systems on the continental margins and adjacent abyssal plains in the North Atlantic and westernmost Mediterranean allows to characterize different sedimentation models.En prens

    Gene Expression Profiling of Embryonic Human Neural Stem Cells and Dopaminergic Neurons from Adult Human Substantia Nigra

    Get PDF
    Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's disease. We used Agilent's and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture, and a multicellular tissue from postmortem adult substantia nigra (SN) which are rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell population. Careful analysis of the data that emerged using DAVID has permitted us to distinguish several genes and pathways that are involved in dopaminergic (DA) differentiation, and to identify the crucial signaling pathways that direct the process of differentiation. The set of genes expressed more highly at hENSC is enriched in molecules known or predicted to be involved in the M phase of the mitotic cell cycle. On the other hand, the genes enriched in SN cells include a different set of functional categories, namely synaptic transmission, central nervous system development, structural constituents of the myelin sheath, the internode region of axons, myelination, cell projection, cell somata, ion transport, and the voltage-gated ion channel complex. Our results were also compared with data from various databases, and between different types of arrays, Agilent versus Illumina. This approach has allowed us to confirm the consistency of our obtained results for a large number of genes that delineate the phenotypical differences of embryonic NSCs, and SN cells
    • 

    corecore