2,703,113 research outputs found

    Noncommutative GUT inspired theories and the UV finiteness of the fermionic four point functions

    Full text link
    We show at one-loop and first order in the noncommutativity parameters that in any noncommutative GUT inspired theory the total contribution to the fermionic four point functions coming only from the interaction between fermions and gauge bosons, though not UV finite by power counting, is UV finite at the end of the day. We also show that this is at odds with the general case for noncommutative gauge theories --chiral or otherwise-- defined by means of Seiberg-Witten maps that are the same --barring the gauge group representation-- for left-handed spinors as for right-handed spinors. We believe that the results presented in this paper tilt the scales to the side of noncommutative GUTS and noncommutative GUT inspired versions of the Standard Model.Comment: 11 pages, 3 figures. Version 2: references fixed and completed. Version 3: Comments adde

    Size-sorting dust grains in the surface layers of protoplanetary disks

    Get PDF
    Aims: We wish to investigate what the effect of dust sedimentation is on the observed 10 mum feature of protoplanetary disks and how this may affect the interpretation of the observations. Methods: Using a combination of modeling tools, we simulated the sedimentation of a dust grain size distribution in an axisymmetric 2-D model of a turbulent protoplanetary disk, and we used a radiative transfer program to compute the resulting spectra. Results: We find that the sedimentation can turn a flat feature into a pointy one, but only to a limited degree and for a very limited set of particle size distributions. Only if we have a bimodal size distribution, i.e. a very small grain population and a bigger grain population, do we find that the transformation from a flat to a pointy feature upon dust sedimentation is strong. However, our model shows that, if sedimentation is the sole reason for the variety of silicate feature strengths observed in protoplanetary disks, then we would expect to find a correlation such that disks with weak mid- to far-infrared excess have a stronger 10 mum silicate feature than disks with a strong mid- to far-infrared excess. If this is contrary to what is observed, then this would indicate that sedimentation cannot be the main reason for the variety of 10 mum silicate features observed in protoplanetary disks.Comment: Astronomy and Astrophysics, in pres
    • …
    corecore