

City, University of London Institutional Repository

Citation: Hunt, S. and Sands, D. (2020). New Program Abstractions for Privacy. In: Di
Pierro, A., Malacaria, A. and Nagarajan, P. (Eds.), From Lambda Calculus to Cybersecurity
Through Program Analysis. . Springer. ISBN 9783030411022

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23675/

Link to published version: http://dx.doi.org/10.1007/978-3-030-41103-9_10

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/287606385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Metadata of the chapter that will be visualized in
SpringerLink

Book Title From Lambda Calculus to Cybersecurity through Program Analysis

Series Title

Chapter Title New Program Abstractions for Privacy
Copyright Year 2020
Copyright HolderName Springer Nature Switzerland AG

Corresponding Author Family Name Hunt
Particle
Given Name Sebastian
Prefix
Suffix
Role
Division
Organization City, University of London
Address London, UK
Email sebastian.hunt.1@city.ac.uk

Author Family Name Sands
Particle
Given Name David
Prefix
Suffix
Role
Division
Organization Chalmers University of Technology
Address Gothenburg, Sweden
Email

Abstract Static program analysis, once seen primarily as a tool for optimising programs, is now increasingly
important as a means to provide quality guarantees about programs. One measure of quality is the extent to
which programs respect the privacy of user data. Differential privacy is a rigorous quantified definition of
privacy which guarantees a bound on the loss of privacy due to the release of statistical queries. Among the
benefits enjoyed by the definition of differential privacy are compositionality properties that allow
differentially private analyses to be built from pieces and combined in various ways. This has led to the
development of frameworks for the construction of differentially private program analyses which are
private-by-construction. Past frameworks assume that the sensitive data is collected centrally, and
processed by a trusted curator. However, the main examples of differential privacy applied in practice - for
example in the use of differential privacy in Google Chrome’s collection of browsing statistics, or Apple’s
training of predictive messaging in iOS 10 -use a purely local mechanism applied at the data source, thus
avoiding the collection of sensitive data altogether. While this is a benefit of the local approach, with
systems like Apple’s, users are required to completely trust that the analysis running on their system has
the claimed privacy properties.
In this position paper we outline some key challenges in developing static analyses for analysing
differential privacy, and propose novel abstractions for describing the behaviour of probabilistic programs
not previously used in static analyses.

New Program Abstractions for Privacy

Sebastian Hunt1(B) and David Sands2

1 City, University of London, London, UK
sebastian.hunt.1@city.ac.uk

2 Chalmers University of Technology, Gothenburg, Sweden

Abstract. Static program analysis, once seen primarily as a tool for
optimising programs, is now increasingly important as a means to pro-
vide quality guarantees about programs. One measure of quality is the
extent to which programs respect the privacy of user data. Differential AQ1

privacy is a rigorous quantified definition of privacy which guarantees
a bound on the loss of privacy due to the release of statistical queries.
Among the benefits enjoyed by the definition of differential privacy are
compositionality properties that allow differentially private analyses to
be built from pieces and combined in various ways. This has led to the AQ2

development of frameworks for the construction of differentially private
program analyses which are private-by-construction. Past frameworks
assume that the sensitive data is collected centrally, and processed by
a trusted curator. However, the main examples of differential privacy
applied in practice - for example in the use of differential privacy in
Google Chrome’s collection of browsing statistics, or Apple’s training of
predictive messaging in iOS 10 -use a purely local mechanism applied at
the data source, thus avoiding the collection of sensitive data altogether.
While this is a benefit of the local approach, with systems like Apple’s,
users are required to completely trust that the analysis running on their
system has the claimed privacy properties.

In this position paper we outline some key challenges in develop-
ing static analyses for analysing differential privacy, and propose novel
abstractions for describing the behaviour of probabilistic programs not
previously used in static analyses.

1 Purpose and Aims

Differential privacy [6] perhaps represents the most rigorous and robust approach
to privacy today. Unlike anonymisation methods which focus on properties of
the data such as ensuring that there are several records with a given attribute,
or that certain fields have been deleted, it is a property of the general mechanism
(algorithm) used to release the data (and thus independent of the data itself);
an algorithm which inputs sensitive data and outputs public data (typically used
to compute some statistical property if the data) satisfies differential privacy if,
for any input, adding or removing the data for any one individual makes very
little observable difference to the overall result. For the purpose of this work we
will not delve into the specific technical details of the definition.

c© Springer Nature Switzerland AG 2020
A. Di Pierro et al. (Eds.): Festschrift Hankin, LNCS 12065, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-41103-9_10

A
ut

ho
r

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41103-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-41103-9_10

2 S. Hunt and D. Sands

Example: Randomized Response. As an example, suppose that a data analyst
wishes to answer the question: what percentage of browser users have visited web-
sites commonly used to facilitate the download of copyrighted material? Suppose
this information can be determined from the browsing history stored in your
browser. One way to give a useful but necessarily approximate answer to this
question, at the same time as limiting the privacy risk for the individual, is to
use the following procedure: each respondent flips two coins; if both are heads
then answer “Yes”, if both are tails then answer “No”, and otherwise answer the
query truthfully. The data analyst is able to make a statistical estimate of the
true percentage: if there are y “Yes” answers from 10000 respondents then we
expect 2500 random “Yes” answers, 2500 random “No” answers, so the answer
to the question can be estimated as (y − 2500)/5000. At the same time, anyone
intercepting a “Yes” answer from any one individual cannot know whether it
was generated by honesty or randomness – even if the response becomes public
data the respondent can plausibly deny having visited such websites. In this
specific example we can informally think of the increase in privacy risk as a mul-
tiplicative factor of 0.75/0.25 = 3, so if there was already a 0.1% chance of, say,
someone launching an investigation into whether a given IP address has been
used to share copyrighted data, the risk in participation would at most increase
to 3 × 0.1%. By adjusting the probabilities of the coin flips one can increase the
degree of privacy at the expense of either having lower accuracy in the reported
result, or of requiring more data points to compensate for the increased noise.

This algorithm is differentially private [5]. Differential privacy is a param-
eterised definition, and the parameter, referred to as “epsilon”, bounds (the
natural logarithm of) how much multiplicative difference there is between an
analysis using my data or someone else’s. In the case of this particular algorithm
we would say that it is ε-differentially private, with ε = ln 3. Every nontrivial dif-
ferentially private algorithm operates by the addition of noise in some form. The
particular algorithm described in the example is based on a 50-year-old survey
technique called randomised response, and was designed to persuade respondents
to tell truthful answers to potentially embarrassing or incriminating questions.

Frameworks for Differential Privacy. Differential privacy enjoys a number of use-
ful properties that make it, in theory, an excellent foundation for robust privacy-
aware information release. In particular it satisfies a number of useful composi-
tional properties that allow the construction of differentially private algorithms
from well-behaved data transformations and differentially private components.
Making use of these, a number of differential privacy frameworks have emerged
which support the construction of differentially private mechanisms. These lever-
age general compositional properties of differential privacy to simplify the static
verification or dynamic enforcement of a desired amount of privacy. Examples
of systems of this ilk are,

– PINQ [22], wPINQ [23], ProPer [11], and EKTELO [25] which dynamically
monitor how data is used, and ensure that the computation never exceeds a
given privacy budget, or

A
ut

ho
r

Pr
oo

f

New Program Abstractions for Privacy 3

– Fuzz [13,15] and LightDP [26] where programs are written in a language
with a custom type system or special verification annotations, and where
static type checking/verification provides differential privacy guarantees.

Fig. 1. Centralised Model (figure
from [10])

Fig. 2. Local Model (fig. from [10])

All of these frameworks focus on verifi-
cation of mechanisms which are assumed to
have access to the whole data set. This implies
the existence of a trusted database curator
who holds the sensitive data, and who has
the responsibility to apply the mechanism to
the data and to keep track of a global privacy
risk (Fig. 1). We refer to this as the centralised
model.

Local Differential Privacy. The randomised
response mechanism described above has a
different trust model, and is called local dif-
ferential privacy [4,19] or simply “the local
model” [7]. In the local model the privacy
mechanism is applied locally, at each respon-
dent (Fig. 2).

The local model benefits from the fact that
there is no longer a need to centrally store
sensitive data – privacy is managed at the
source (your cell-phone, car, web browser. . .).
This removes the need for a trusted curator,
and lowers the security risk of data breach.
Perhaps for these reasons, the local model is
the flavour of differential privacy which was
first to be used in the actual “real-world”
instances of differential privacy, by Google (in
the Chrome browser) [12] and Apple (in iOS
10 and MacOS) [1].

Research Goals
The local analyses by Apple and Google require a great deal of trust on the part
of the user: you have to trust that they implemented their algorithms correctly
on your device, and that the algorithms are indeed differentially private, not
just for a single round of communication, but even when statistics are reported
over time. Apple, in particular, did not initially report on the intended quantity
of privacy (“epsilon”) secret, and a recent reverse-engineering study of their
algorithms [24] suggests that this trust is not well founded, and concludes

“We call for Apple to make its implementation of privacy-preserving algo-
rithms public and to make the rate of privacy loss fully transparent and
tuneable by the user”

A
ut

ho
r

Pr
oo

f

4 S. Hunt and D. Sands

This comment aligns well with what we view as key design criteria for a frame-
work for local differential privacy: the differential privacy properties of the
mechanisms which deliver results based on sensitive data should be statically
verifiable, and the verification should be simple enough to be done on the fly,
for example in the respondent’s device.

In rest of this paper we outline some key problems and possibilities in working
towards statically verifiable local differential privacy. Most prior general frame-
works for enforcing or verifying differential privacy are focused on the centralised
model of a trusted curator providing access to a raw database. In Sect. 2 we out-
line one approach to verifiable local differential privacy, PreTPost, due to Ebadi
and Sands [10], and discuss its limitations.

The limitations of PreTPost motivate a more general static analysis app-
roach. We follow the philosophy outlined by Malacaria in factoring a quantitative
information flow (QIF) analysis via a dependency analysis: [21]:

“〈the lattice of information〉 allows for an elegant analysis decomposition of
QIF into two steps, the first being an algebraic interpretation, the second
being a numerical evaluation”

The “algebraic interpretation” referred to here is the use of equivalence relations,
dubbed “the lattice of information” [20], but also known (in a more general form)
as the lattice of partial equivalence relations where it was first used by the authors
to express static analysis of dependency, referred to as a “binding time analysis”
in [17], and as a “constancy analysis” in [16].

The gist of the approach articulated by Malacaria is to first determine which
public outputs depend on which sensitive inputs, and then to instantiate that
dependency numerically as a quantity. In our setting the quantity we want to
measure is the epsilon of differential privacy: a bound on the largest proportional
change in probability of obtaining any particular output when the user’s sensitive
input data is changed.

To this end we outline some specific challenges and opportunities in realising
this programme for (local) differential privacy.

In Sect. 3 we discuss a shortcoming in dependency analyses that leads to
imprecision in the quantitative step, namely the inability to describe a disjunc-
tive dependency (to depend on one thing in some executions, or another thing
in others, but never both in the same execution). This turns out to be a crucial
distinction for properties such as differential privacy, because it allows us to use
max rather than sum when we perform the quantitative instantiation step.

In Sect. 4 we propose a new way to instantiate privacy cost. Rather than
directly instantiating with differential privacy costs (or their logarithm), our pro-
posal is to abstract the behaviour of probabilistic programs (i.e. a new abstract
domain) in a way which will provide greater precision and versatility; it is based
on the idea of a geometric interpretation of differential privacy, a privacy region
introduced by Kairouz, Oh, and Viswanath [18].

A
ut

ho
r

Pr
oo

f

New Program Abstractions for Privacy 5

2 Verifiable Local Differential Privacy

PreTPost is a framework for implementing verifiable local differential privacy
[10]. PreTPost leverages the simple observation that local differential privacy is
preserved by arbitrary data pre-processing. The PreTPost framework requires a
data analysis to be decomposed into a pre-processor (Pre), a simple core prob-
abilistic transformation (T), and a post-processor (Post) (Fig. 3).

Pre-processor

local
sensitive

data

Randomising
Transformation

Post-
Processor

Response

Fig. 3. PreTPost schema

The point of this schema is that an analysis delivered to a respondent in the
form of a 〈Pre, T,Post〉 triple can be easily analysed: the quantity of differen-
tial privacy, often just referred to as “epsilon” but what we will refer to as the
privacy cost, can be bounded by the cost of T alone since, unlike in the case of
centralised differential privacy, the pre-processing cannot inflate the privacy cost
of a subsequent differentially private operation. It is shown that this decomposi-
tion is possible and straightforward for a range of local analysis algorithms from
the literature. Ebadi has implemented a prototype implementation of the PreT-
Post framework using sandboxed execution to prevent a malicious pre-processor
from communicating the sensitive data directly, from bypassing the randomising
transformation, or communicating via a covert timing channel [9].

Limitations of PreTPost. While the PreTPost schema provides a simple route
to analysis of a proposed differentially private data processing algorithm, there
are some limitations:

– The proposed algorithm must be refactored into the PreTPost format, which
might not be the most natural way to express the algorithm.

– In practice (including in the PreTPost implementation) there are not only
sensitive inputs, but also public inputs from other sources (data which is
not considered sensitive) such as local data, as well as local public outputs
(which may be used to modify subsequent public inputs). Although we don’t
anticipate major problems with these generalisations, they are still outside
the simple schema of PreTPost.

– It cannot account for algorithms which reduce the sensitivity of the input
data. For example, suppose an algorithm works by bitwise randomisation
of a bit vector generated by a pre-processing of the sensitive input. If pre-
processing yields an n-bit vector in which only a fixed number of bits k depend

A
ut

ho
r

Pr
oo

f

6 S. Hunt and D. Sands

on the sensitive data, then the privacy cost is k times the cost associated
with the randomisation, whereas PreTPost necessarily assumes all n bits are
sensitive; this example is reminiscent of the Bloom filter used in the full
Rappor system [12];

– it cannot account for repeated randomisation (also a feature of the full Rappor
system), i.e., where some randomised data is further randomised (not a com-
mon operation in differentially private algorithms, but used by the Rappor
system).

While it is not clear the extent to which these limitations are show stoppers
for PreTPost, by developing a more general and expressive static analysis that
is not based on a fixed program schema we aim to gain a more fundamental
understanding of the problem of abstracting and verifying differentially private
algorithms. The remaining sections discuss some of the building blocks for such
an analysis.

3 Dependency Analysis: The Need for Disjunction

Our aim is to address the limitations of PreTPost described above, in part
by using dependency analysis to deal with the complex and subtle inter-
dependencies that arise in realistic implementations and which prevent a simple,
clean separation into three phases. However, it turns out that to get good results
we need a semantic notion of dependency that is more expressive than the one
used in standard dependency analyses. Moreover, this richer notion of depen-
dency is relevant and potentially useful even when a mechanism can be cleanly
separated in PreTPost style.

In this section we outline why we need a more general notion (a notion of
disjunction), and how this might be represented in an analysis. We do not,
however, go into the details of the semantic model for this generalised form,
which is work in progress.

As it stands, PreTPost has nothing to say about how the post-processing
phase uses the data supplied by the probabilistic transformation T . While post-
processing the outputs of T can never increase their privacy cost, it can decrease
it. Consider the code in Figs. 4, 5 and 6. Taken together these pieces of code define
three alternative versions of a mechanism we call Three-Bits, which processes
a 3-bit private value (an integer between 0 and 7, stored in x) and outputs a
randomised result in y. All three versions share the same pre-processing and
probabilistic phases but differ in their post-processing. The Pre-phase projects
out the three bits of x into a, b, c and the T-phase independently randomises
the bits. Suppose that the privacy cost of Ran is ε.

Post-processing (A) simply reassembles the randomised bits into a new 3-bit
integer. Version (B) does the same but neglects to include bit b. Version (C)
includes bit a in the result and, depending on a, includes either b or c, but never
both together.

A standard dependency analysis will infer that, after (A), y depends on all
three of a, b, c whereas after (B) it depends on a and c but not b. This allows

A
ut

ho
r

Pr
oo

f

New Program Abstractions for Privacy 7

a = x % 2 ;
b = (x/2) % 2 ;
c = (x/4) % 2 ;

Fig. 4. Three-Bits: Pre

a = Ran(a) ;
b = Ran(b) ;
c = Ran(c) ;

Fig. 5. Three-Bits: T

y = a + 2∗b + 4∗ c ;

(A)

y = a + 4∗ c ;

(B)

i f (a == 0)
y = a + 2∗b ;

e l s e
y = a + 4∗ c ;

(C)

Fig. 6. Three-Bits: Post

us to infer that the privacy cost for Three-Bits-A is the sum of the costs for a,
b, c (a total of 3ε) but the privacy cost for Three-Bits-B is the sum only of the
costs for a and c (a total of 2ε).

Now consider (C). A standard dependency analysis will infer that, as for
(A), y depends on a, b, c and an analysis using this dependency information
would therefore also assign a privacy cost of 3ε to Three-Bits-C. But this is
overly conservative. On any given run of (C), the value of y reveals either the
values of a and c, or the values of a andc, but never all three together. This
disjunctive dependency behaviour is reflected in the true privacy cost of Three-
Bits-C, which is only 2ε. More generally, for a disjunctive dependency it turns
out to be sound for differential privacy to take the maximum cost across the
disjuncts, rather than the sum. Hence the cost for (C) may be calculated as
max(cost(a) + cost(b), cost(a) + cost(c)) = 2ε, in contrast with the cost for (A)
which is cost(a) + cost(b) + cost(c) = 3ε.

A standard dependency analysis assigns to each output variable y a depen-
dency set of input variables on which it may depend, ie a set X such that any
choice of initial values for the variables in X completely determines the resulting
value of y. Example (C) suggests that for our purposes it might be natural to
lift such an analysis to represent a disjunctive dependency by a set of sets of
variables. The dependency for y could then be represented as

{{a, b}, {a, c}}
Adapting standard approaches from abstract interpretation ([3,14]) it is rela-
tively straightforward to lift an existing dependency analysis in this way (though
the resulting algorithmic complexity may present practical challenges). However,
it is not immediately obvious how to give a satisfactory semantics to such a set
of sets. In particular, the required semantics is not simple logical disjunction of
dependency properties: in example (C) it is neither true that the value of y is
determined solely by {a, b} nor that it is determined solely by {a, c}.

Our work in progress suggests that a satisfactory semantics for disjunctive
dependency is obtainable by generalising the usual non-interference condition in

A
ut

ho
r

Pr
oo

f

8 S. Hunt and D. Sands

an appropriate way. We conclude this section with some hints at the direction
in which we are aiming.

The standard non-interference condition can give meaning to e.g., “output x
depends on inputs y and z” by using equivalence relations over states (mappings
from variables to values). For this example we need two such relations, ={x},
which relates two stores if they agree on the value of variable x, and ={y,z},
which relates two stores if they agree on the values of both y and z. Then the
semantics of “output x depends on inputs y and z” is: when the program is run
on two stores related by ={y,z}, you end up with two stores related by ={x}.

While there are specific relations within the full lattice of equivalence rela-
tions on stores that exhibit disjunctive dependencies such as “output x depends
on y and z or y and w”, they can only express such a disjunction by saying
exactly how it arises. For example we could build an equivalence relation on
input stores that allows us to express the more specific disjunction “when p(y)
then x depends on y and z but otherwise it depends on y and w”. What we are
aiming for is a method that will allow us to give a semantics for such a disjunc-
tion more abstractly, directly from the relations ={y,z} and ={y,w}, by working
with suitable sets of relations that take into account all the ways that such a
disjunction might arise.

4 The Abstract Domain of Privacy Regions

As mentioned in the introduction, for the quantitative phase of our analysis,
we propose a novel abstract domain for analysis of probabilistic programs based
on the idea of privacy regions. A key design goal is to allow us to leverage the
framework of abstract interpretation [2]. Recall that abstract interpretation is a
framework for semantics-based analysis which works by interpreting programs
over an abstract domain in place of the concrete (standard) semantic domain,
where each abstract value a denotes a concrete property γa. Each program con-
struct is then given an abstract interpretation which soundly approximates its
standard semantics: if a is mapped to a′, the standard semantics transforms the
property γa to some property P ⊆ γa′. The abstract semantics of a program
is then computed by a fixed-point iteration. The abstract domain is typically
required to be a complete lattice and the design of the framework ensures that
it is always sound to over-approximate by computing abstract values higher in
the lattice. This freedom may be used (at the cost of reduced precision) to force
the fixed-point iteration to converge within an acceptable time limit. Here, we
give a lightweight, simplified account of the idea of privacy regions and explain
why they have the appropriate structure to serve as an abstract domain.

To motivate the definitions we need to recall the generalisation of differen-
tial privacy known as approximate or (ε, δ)-differential privacy. In this variant
(equivalent to ε-DP when δ = 0) one weakens the requirement so that the dif-
ferential privacy property may fail with some probability (typically very small)
given by δ. This weakening can be used to obtain much better accuracy when
composing analyses.

A
ut

ho
r

Pr
oo

f

New Program Abstractions for Privacy 9

Fig. 7. (ε, δ) privacy region Fig. 8. Example privacy region

A key observation of [18] is that the (ε, δ)-differential privacy properties
enjoyed by a mechanism can be characterised geometrically. For each choice of
(ε, δ) define its privacy region1 to be the closed region of the unit square above
the line x = y and below the line y = eεx + δ as pictured in Fig. 7. Suppose that
M has domain A and range B (ie M maps each value in A to a distribution over
B). Then M is (ε, δ)-DP iff the following set is contained in the (ε, δ) privacy
region:

{(x, y) | a, a′ ∈ A,S ⊆ B, x = Pr[M(a) ∈ S], y = Pr[M(a′) ∈ S], y ≥ x} (*)

(Note that any such set is symmetrical about y = 1 − x, because Pr[M(a) ∈
S] = 1 − Pr[M(a) ∈ S]).

The privacy region for M , denoted R(M), is then defined as the intersection
of all the (ε, δ) privacy regions such that M is (ε, δ)-DP, ie all the (ε, δ) privacy
regions which contain the set (*). Equivalently, and more constructively, we can
define R(M) to be the convex closure of (*): an example of a privacy region
for a mechanism (specified as a stochastic matrix) is given in Fig. 8, where the
points generated by this construction are marked. Note that each upper edge of a
privacy region R(M) witnesses a distinct (ε, δ)-DP property, where ε is the log of
the gradient and δ is the y-intercept; all of these properties hold simultaneously
for M (and, indeed, for any mechanism whose privacy region is contained in
R(M)). In this example, the three upper edges witness the properties (ε =
ln 4, δ = 0), (ε = 0, δ = 1/4), and (ε = ln(1/4), δ = 3/4). (The two vertices of
the middle edge – (1/12, 4/12) and (8/12, 11/12) – are generated by the output
events {Yes} and {No,Maybe}, respectively.)

1 For convenience, our definition is a rotation by 90◦ in the unit square of the region
defined by [18] and we restrict to the region above y = x (their definition, after
rotation, is symmetric about y = x).

A
ut

ho
r

Pr
oo

f

10 S. Hunt and D. Sands

Our key proposal is that the set of privacy regions forms a suitable abstract
domain for static program analysis based on the principles of abstract interpre-
tation (as outlined at the start of this section):

1. Privacy regions form a complete lattice ordered by subset inclusion, with the
bottom element represented by the line x = y ((0, 0)-differential privacy)
and top element being the upper left half of the unit square (no differential
privacy), and the meet and join given by intersection and convex closure of
the union, respectively.

2. The semantic content of a privacy region is all the (ε, δ)-regions in which it
is contained, so any R ⊇ R(M) which can be inferred by analysis is a safe
approximation for M .

3. Privacy regions subsume the notion of distance between distributions (as
used in pure ε-DP): the “leading edge” of a privacy region (rising from (0, 0))
defines an (ε, δ)-DP property where δ = 0 and, by convexity, where ε is
maximal.

4. Even when ε is the only property of interest, the extra information carried by
privacy regions provides a better abstraction, yielding a more precise bound
on ε than can be obtained using distance alone.

5. [18] provides a variety of useful results that characterise privacy regions,
in particular describing the privacy region of a mechanism built from the
composition of multiple mechanisms – very natural operations in a static
program analysis.

6. We have been able to construct novel abstractions of function composition
and pairing, which are essential ingredients of a static analysis.

7. There are many natural ways to safely coarsen a privacy region (to make it
bigger, and thus less precise) – something which is a prerequisite to approxi-
mating fixed-point computations necessary to abstract the behaviour of iter-
ative or recursive computation.

5 Conclusions

We have identified two key steps in our goal of constructing a static analysis of
local differential privacy: the ability to abstract disjunctive dependency prop-
erties, and the use of privacy regions as an abstract domain for privacy cost.
We have a promising approach for the semantics of disjunctive dependency, and
believe this could be of independent interest. It remains, of course, to show that
this can be combined with privacy regions to perform a useful static analysis.

Acknowledgements. This work was partly funded by the Swedish Foundation for
Strategic Research (SSF) under the projects WebSec and by the Swedish Research
Council (VR).

References

1. Apple Press Release: Apple previews iOS 10, the biggest iOS release ever (2016).
https://www.apple.com/newsroom/2016/06/apple-previews-ios-10-biggest-ios-rel
ease-ever. Accessed 22 July 2017

A
ut

ho
r

Pr
oo

f

https://www.apple.com/newsroom/2016/06/apple-previews-ios-10-biggest-ios-release-ever
https://www.apple.com/newsroom/2016/06/apple-previews-ios-10-biggest-ios-release-ever

New Program Abstractions for Privacy 11

2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
4th Annual ACM Symposium on Principles of Programming Languages, pp. 238–
252 (1977)

3. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. POPL 1979, pp. 269–282. ACM, New York (1979). https://
doi.org/10.1145/567752.567778

4. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical mini-
max rates. In: 2013 51st Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 1592–1592, October 2013. https://doi.org/10.1109/
Allerton.2013.6736718

5. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

7. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy.
Found. Trends Theoret. Comput. Sci. 9, 211–407 (2014). https://doi.org/10.1561/
0400000042

8. Ebadi, H.: Dynamic Enforcement of Differential Privacy. Ph.D. thesis, Chalmers
University of Technology, March 2018

9. Ebadi, H.: The PreTPost Framework (2018). https://github.com/ebadi/preTpost
10. Ebadi, H., Sands, D.: PreTPost: a transparent, user verifiable, local differential

privacy framework (2018). https://github.com/ebadi/preTpost. Also appears in
[8]

11. Ebadi, H., Sands, D., Schneider, G.: Differential privacy: now it’s getting personal.
In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. POPL 2015, pp. 69–81. ACM (2015). https://
doi.org/10.1145/2676726.2677005

12. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: CCS. ACM (2014)

13. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent
types for differential privacy. In: Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL 2013, pp.
357–370. ACM, New York (2013). https://doi.org/10.1145/2429069.2429113

14. Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract inter-
pretation. Sci. Comput. Program. 32(1), 177–210 (1998). https://doi.org/10.
1016/S0167-6423(97)00034-8,http://www.sciencedirect.com/science/article/pii/
S0167642397000348. 6th European Symposium on Programming

15. Haeberlen, A., Pierce, B.C., Narayan, A.: Differential privacy under fire. In:
Proceedings of the 20th USENIX Conference on Security. SEC 2011, pp.
33–33. USENIX Association, Berkeley (2011). http://dl.acm.org/citation.cfm?
id=2028067.2028100

16. Hunt, S.: Abstract interpretation of functional languages: from theory to practice.
Ph.D. thesis, Imperial College London, UK (1991)

17. Hunt, S., Sands, D.: Binding time analysis: a new perspective. In: Proceedings of
the ACM Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation (PEPM 1991), pp. 154–164. ACM Press (1991)

A
ut

ho
r

Pr
oo

f

https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1109/Allerton.2013.6736718
https://doi.org/10.1109/Allerton.2013.6736718
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://github.com/ebadi/preTpost
https://github.com/ebadi/preTpost
https://doi.org/10.1145/2676726.2677005
https://doi.org/10.1145/2676726.2677005
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1016/S0167-6423(97)00034-8
https://doi.org/10.1016/S0167-6423(97)00034-8
http://www.sciencedirect.com/science/article/pii/S0167642397000348
http://www.sciencedirect.com/science/article/pii/S0167642397000348
http://dl.acm.org/citation.cfm?id=2028067.2028100
http://dl.acm.org/citation.cfm?id=2028067.2028100

12 S. Hunt and D. Sands

18. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential pri-
vacy. IEEE Trans. Inf. Theory 63(6), 4037–4049 (2017)

19. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differ-
ential privacy. J. Mach. Learn. Res. 17(17), 1–51 (2016). http://jmlr.org/
papers/v17/15-135.html

20. Landauer, J., Redmond, T.: A lattice of information. In: CSFW (1993)
21. Malacaria, P.: Algebraic foundations for information theoretical, probabilistic an

guessability measures of information flow. CoRR abs/1101.3453 (2011). http://
arxiv.org/abs/1101.3453

22. McSherry, F.: Privacy integrated queries. In: Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of Data (SIGMOD). Association
for Computing Machinery, Inc., June 2009

23. Proserpio, D., Goldberg, S., McSherry, F.: Calibrating data to sensitivity in private
data analysis: a platform for differentially-private analysis of weighted datasets.
Proc. VLDB Endow. 7(8), 637–648 (2014). https://doi.org/10.14778/2732296.
2732300

24. Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.: Privacy loss in Apple’s imple-
mentation of differential privacy on MacOS 10.12. CoRR abs/1709.02753 (2017).
http://arxiv.org/abs/1709.02753

25. Zhang, D., McKenna, R., Kotsogiannis, I., Hay, M., Machanavajjhala, A., Miklau,
G.: EKTELO: a framework for defining differentially-private computations. In:
Proceedings of the 2018 International Conference on Management of Data, SIG-
MOD Conference 2018, Houston, TX, USA, 10–15 June 2018, pp. 115–130 (2018).
https://doi.org/10.1145/3183713.3196921

26. Zhang, D., Kifer, D.: LightDP: towards automating differential privacy proofs. In:
POPL (2017)

A
ut

ho
r

Pr
oo

f

http://jmlr.org/papers/v17/15-135.html
http://jmlr.org/papers/v17/15-135.html
http://arxiv.org/abs/1101.3453
http://arxiv.org/abs/1101.3453
https://doi.org/10.14778/2732296.2732300
https://doi.org/10.14778/2732296.2732300
http://arxiv.org/abs/1709.02753
https://doi.org/10.1145/3183713.3196921

Author Queries

Chapter 10

Query
Refs.

Details Required Author’s
response

AQ1 This is to inform you that corresponding author and
email address has been identified as per the information
available in the Copyright form.

AQ2 Per Springer style, both city and country names must be
present in the affiliations. Accordingly, we have inserted
the city names in all affiliations. Please check and con-
firm if the inserted city names are correct. If not, please
provide us with the correct city names.

A
ut

ho
r

Pr
oo

f

