research

The Seiberg-Witten map and supersymmetry

Abstract

The lack of any local solution to the first-order-in-h omegamn Seiberg-Witten (SW) map equations for U(1) vector superfields compels us to obtain the most general solution to those equations that is a quadratic polynomial in the ordinary vector superfield, v, its chiral and antichiral projections and the susy covariant derivatives of them all. Furnished with this solution, which is local in the susy Landau gauge, we construct an ordinary dual of noncommutative U(1) SYM in terms of ordinary fields which carry a linear representation of the N=1 susy algebra. By using the standard SW map for the N=1 U(1) gauge supermultiplet we define an ordinary U(1) gauge theory which is dual to noncommutative U(1) SYM in the WZ gauge. We show that the ordinary dual so obtained is supersymmetric, for, as we prove as we go along, the ordinary gauge and fermion fields that we use to define it carry a nonlinear representation of the N=1 susy algebra. We finally show that the two ordinary duals of noncommutative U(1) SYM introduced above are actually the same N=1 susy gauge theory. We also show in this paper that the standard SW map is never the theta theta--bar component of a local superfield in v and check that, at least at a given approximation, a suitable field redefinition of that map makes the noncommutative and ordinary --in a Bmn field-- susy U(1) DBI actions equivalent.Comment: 28 pages. No figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019