514 research outputs found

    Inter- and Intragranular Effects in Superconducting Compacted Platinum Powders

    Full text link
    Compacted platinum powders exhibit a sharp onset of diamagnetic screening at T1.9T \simeq 1.9 mK in zero magnetic field in all samples investigated. This sharp onset is interpreted in terms of the intragranular transition into the superconducting state. At lower temperatures, the magnetic ac susceptibility strongly depends on the ac field amplitude and reflects the small intergranular critical current density jcj_{c}. This critical current density shows a strong dependence on the packing fraction f of the granular samples. Surprisingly, jcj_{c} increases significantly with decreasing f (jc(B=0,T=0)0.07j_{c}(B=0, T=0) \simeq 0.07 A/cm2^{2} for f = 0.67 and jc(B=0,T=0)0.8j_{c}(B=0, T=0) \simeq 0.8 A/cm2^{2} for f = 0.50). The temperature dependence of jcj_{c} shows strong positive curvature over a wide temperature range for both samples. The phase diagrams of inter- and intragranular superconductivity for different samples indicate that the granular structure might play the key role for an understanding of the origin of superconductivity in the platinum compacts.Comment: 11 pages including 9 figures. To appear in Phys. Rev. B in Nov. 0

    Superconducting properties of Nb thin films deposited on porous silicon templates

    Full text link
    Porous silicon, obtained by electrochemical etching, has been used as a substrate for the growth of nanoperforated Nb thin films. The films, deposited by UHV magnetron sputtering on the porous Si substrates, inherited their structure made of holes of 5 or 10 nm diameter and of 10 to 40 nm spacing, which provide an artificial pinning structure. The superconducting properties were investigated by transport measurements performed in the presence of magnetic field for different film thickness and substrates with different interpore spacing. Perpendicular upper critical fields measurements present peculiar features such as a change in the H_c2(T) curvature and oscillations in the field dependence of the superconducting resistive transition width at H=1 Tesla. This field value is much higher than typical matching fields in perforated superconductors, as a consequence of the small interpore distance.Comment: accepted for publication on Journal of Applied Physic

    Origin of complex crystal structures of elements at pressure

    Full text link
    We present a unifying theory for the observed complex structures of the sp-bonded elements under pressure based on nearly free electron picture (NFE). In the intermediate pressure regime the dominant contribution to crystal structure arises from Fermi-surface Brillouin zone (FSBZ) interactions - structures which allow this are favoured. This simple theory explains the observed crystal structures, transport properties, the evolution of internal and unit cell parameters with pressure. We illustrate it with experimental data for these elements and ab initio calculation for Li.Comment: 4 pages 5 figure

    Spectroscopic evidence for an all-ferrous [4Fe–4S]0 cluster in the superreduced activator of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans

    Get PDF
    The key enzyme of the fermentation of glutamate by Acidaminococcus fermentans, 2-hydroxyglutarylcoenzyme A dehydratase, catalyzes the reversible syn-elimination of water from (R)-2-hydroxyglutaryl-coenzyme A, resulting in (E)-glutaconylcoenzyme A. The dehydratase system consists of two oxygen-sensitive protein components, the activator (HgdC) and the actual dehydratase (HgdAB). Previous biochemical and spectroscopic studies revealed that the reduced [4Fe–4S]+ cluster containing activator transfers one electron to the dehydratase driven by ATP hydrolysis, which activates the enzyme. With a tenfold excess of titanium(III) citrate at pH 8.0 the activator can be further reduced, yielding about 50% of a superreduced [4Fe–4S]0 cluster in the all-ferrous state. This is inferred from the appearance of a new Mössbauer spectrum with parameters δ = 0.65 mm/s and ΔEQ = 1.51–2.19 mm/s at 140 K, which are typical of Fe(II)S4 sites. Parallel-mode electron paramagnetic resonance (EPR) spectroscopy performed at temperatures between 3 and 20 K showed two sharp signals at g = 16 and 12, indicating an integer-spin system. The X-band EPR spectra and magnetic Mössbauer spectra could be consistently simulated by adopting a total spin St = 4 for the all-ferrous cluster with weak zero-field splitting parameters D = −0.66 cm−1 and E/D = 0.17. The superreduced cluster has apparent spectroscopic similarities with the corresponding [4Fe–4S]0 cluster described for the nitrogenase Fe-protein, but in detail their properties differ. While the all-ferrous Fe-protein is capable of transferring electrons to the MoFe-protein for dinitrogen reduction, a similar physiological role is elusive for the superreduced activator. This finding supports our model that only one-electron transfer steps are involved in dehydratase catalysis. Nevertheless we discuss a common basic mechanism of the two diverse systems, which are so far the only described examples of the all-ferrous [4Fe–4S]0 cluster found in biology

    Effect of granularity on the insulator-superconductor transition in ultrathin Bi films

    Full text link
    We have studied the insulator-superconductor transition (IST) by tuning the thickness in quench-condensed BiBi films. The resistive transitions of the superconducting films are smooth and can be considered to represent "homogeneous" films. The observation of an IST very close to the quantum resistance for pairs, RNh/4e2R_{\Box}^N \sim h/4e^2 on several substrates supports this idea. The relevant length scales here are the localization length, and the coherence length. However, at the transition, the localization length is much higher than the superconducting coherence length, contrary to expectation for a "homogeneous" transition. This suggests the invalidity of a purely fermionic model for the transition. Furthermore, the current-voltage characteristics of the superconducting films are hysteretic, and show the films to be granular. The relevant energy scales here are the Josephson coupling energy and the charging energy. However, Josephson coupling energies (EJE_J) and the charging energies (EcE_c) at the IST, they are found to obey the relation EJ<EcE_J < E_c. This is again contrary to expectation, for the IST in a granular or inhomogeneous, system. Hence, a purely bosonic picture of the transition is also inconsistent with our observations. We conclude that the IST observed in our experiments may be either an intermediate case between the fermioinc and bosonic mechanisms, or in a regime of charge and vortex dynamics for which a quantitative analysis has not yet been done.Comment: accepted in Physical Review

    Possible robust insulator-superconductor transition on solid inert gas and other substrates

    Full text link
    We present observations of the insulator-superconductor transition in ultrathin films of Bi on amorphous quartz, quartz coated with Ge, and for the first time, solid xenon condensed on quartz. The relative permeability ϵr\epsilon_r ranges from 1.5 for Xe to 15 for Ge. Though we find screening effects as expected, the I-S transition is robust, and unmodified by the substrate. The resistance separatrix is found to be close to h/4e^2 and the crossover thickness close to 25A˚\rm 25 \AA for all substrates. I-V studies and Aslamazov-Larkin analyses indicate superconductivity is inhomogeneous. The transition can be understood in terms of a percolation model.Comment: accepted in Physical Review

    Structure-Function Relations in Oxaloacetate Decarboxylase Complex. Fluorescence and Infrared Approaches to Monitor Oxomalonate and Na+ Binding Effect

    Get PDF
    ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of α, β and γ subunits. The α subunit contains the carboxyltransferase catalytic site. characteristic of a high content of α helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of β sheet structures and a concomitant increase of α helix structures. Oxomalonate binding to αγand α subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. alters the tryptophan environment of the β subunit, consistent with the function of these subunits within the enzyme complex. Formation of a complex between OAD and its substrates elicits structural changes in the α-helical as well as β-strand secondary structure elements

    Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment

    Get PDF
    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl) succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O-2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons
    corecore