1,889 research outputs found
The development of QUADAS : a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews
BACKGROUND: In the era of evidence based medicine, with systematic reviews as its cornerstone, adequate quality assessment tools should be available. There is currently a lack of a systematically developed and evaluated tool for the assessment of diagnostic accuracy studies. The aim of this project was to combine empirical evidence and expert opinion in a formal consensus method to develop a tool to be used in systematic reviews to assess the quality of primary studies of diagnostic accuracy. METHODS: We conducted a Delphi procedure to develop the quality assessment tool by refining an initial list of items. Members of the Delphi panel were experts in the area of diagnostic research. The results of three previously conducted reviews of the diagnostic literature were used to generate a list of potential items for inclusion in the tool and to provide an evidence base upon which to develop the tool. RESULTS: A total of nine experts in the field of diagnostics took part in the Delphi procedure. The Delphi procedure consisted of four rounds, after which agreement was reached on the items to be included in the tool which we have called QUADAS. The initial list of 28 items was reduced to fourteen items in the final tool. Items included covered patient spectrum, reference standard, disease progression bias, verification bias, review bias, clinical review bias, incorporation bias, test execution, study withdrawals, and indeterminate results. The QUADAS tool is presented together with guidelines for scoring each of the items included in the tool. CONCLUSIONS: This project has produced an evidence based quality assessment tool to be used in systematic reviews of diagnostic accuracy studies. Further work to determine the usability and validity of the tool continue
Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas
Background:
Point-of-care (POC) tests for diagnosing schistosomiasis include tests based on circulating antigen detection and urine reagent strip tests. If they had sufficient diagnostic accuracy they could replace conventional microscopy as they provide a quicker answer and are easier to use.
Objectives:
To summarise the diagnostic accuracy of: a) urine reagent strip tests in detecting activeSchistosoma haematobium infection, with microscopy as the reference standard; and b) circulating antigen tests for detecting active Schistosoma infection in geographical regions endemic for Schistosoma mansoni or S. haematobium or both, with microscopy as the reference standard.
Search methods:
We searched the electronic databases MEDLINE, EMBASE, BIOSIS, MEDION, and Health Technology Assessment (HTA) without language restriction up to 30 June 2014.
Selection criteria
We included studies that used microscopy as the reference standard: for S. haematobium, microscopy of urine prepared by filtration, centrifugation, or sedimentation methods; and for S. mansoni, microscopy of stool by Kato-Katz thick smear. We included studies on participants residing in endemic areas only.
Data collection and analysis:
Two review authors independently extracted data, assessed quality of the data using QUADAS-2, and performed meta-analysis where appropriate. Using the variability of test thresholds, we used the hierarchical summary receiver operating characteristic (HSROC) model for all eligible tests (except the circulating cathodic antigen (CCA) POC for S. mansoni, where the bivariate random-effects model was more appropriate). We investigated heterogeneity, and carried out indirect comparisons where data were sufficient. Results for sensitivity and specificity are presented as percentages with 95% confidence intervals (CI).
Main results;
We included 90 studies; 88 from field settings in Africa. The median S. haematobiuminfection prevalence was 41% (range 1% to 89%) and 36% for S. mansoni (range 8% to 95%). Study design and conduct were poorly reported against current standards.
Tests for S. haematobium
Urine reagent test strips versus microscopy
Compared to microscopy, the detection of microhaematuria on test strips had the highest sensitivity and specificity (sensitivity 75%, 95% CI 71% to 79%; specificity 87%, 95% CI 84% to 90%; 74 studies, 102,447 participants). For proteinuria, sensitivity was 61% and specificity was 82% (82,113 participants); and for leukocyturia, sensitivity was 58% and specificity 61% (1532 participants). However, the difference in overall test accuracy between the urine reagent strips for microhaematuria and proteinuria was not found to be different when we compared separate populations (P = 0.25), or when direct comparisons within the same individuals were performed (paired studies; P = 0.21).
When tests were evaluated against the higher quality reference standard (when multiple samples were analysed), sensitivity was marginally lower for microhaematuria (71% vs 75%) and for proteinuria (49% vs 61%). The specificity of these tests was comparable.
Antigen assay
Compared to microscopy, the CCA test showed considerable heterogeneity; meta-analytic sensitivity estimate was 39%, 95% CI 6% to 73%; specificity 78%, 95% CI 55% to 100% (four studies, 901 participants).
Tests for S. mansoni
Compared to microscopy, the CCA test meta-analytic estimates for detecting S. mansoni at a single threshold of trace positive were: sensitivity 89% (95% CI 86% to 92%); and specificity 55% (95% CI 46% to 65%; 15 studies, 6091 participants) Against a higher quality reference standard, the sensitivity results were comparable (89% vs 88%) but specificity was higher (66% vs 55%). For the CAA test, sensitivity ranged from 47% to 94%, and specificity from 8% to 100% (four studies, 1583 participants).
Authors' conclusions:
Among the evaluated tests for S. haematobium infection, microhaematuria correctly detected the largest proportions of infections and non-infections identified by microscopy.
The CCA POC test for S. mansoni detects a very large proportion of infections identified by microscopy, but it misclassifies a large proportion of microscopy negatives as positives in endemic areas with a moderate to high prevalence of infection, possibly because the test is potentially more sensitive than microscopy
High density flow-through culturing of brine shrimp <i>Artemia</i> on inert feeds: preliminary results with a modified culture system
A modified filter system is described for the intensive culturing of Artemia in a continuously renewed medium. Extrapolated to a 1 m³ tank, 25 kg live weight Artemia could be produced over a culture period of two weeks on a diet of micronized and defatted rice bran using the salt enriched effluent of an abandoned geothermal well as a culture medium
Toad radiation reveals into-India dispersal as a source of endemism in the Western Ghats-Sri Lanka biodiversity hotspot
<p>Abstract</p> <p>Background</p> <p>High taxonomic level endemism in the Western Ghats-Sri Lanka biodiversity hotspot has been typically attributed to the subcontinent's geological history of long-term isolation. Subsequent out of – and into India dispersal of species after accretion to the Eurasian mainland is therefore often seen as a biogeographic factor that 'diluted' the composition of previously isolated Indian biota. However, few molecular studies have focussed on into-India dispersal as a possible source of endemism on the subcontinent. Using c. 6000 base pairs of mitochondrial and nuclear DNA, we investigated the evolutionary history and biogeography of true toads (Bufonidae), a group that colonized the Indian Subcontinent after the Indo-Asia collision.</p> <p>Results</p> <p>Contrary to previous studies, Old World toads were recovered as a nested clade within New World Bufonidae, indicating a single colonization event. Species currently classified as <it>Ansonia </it>and <it>Pedostibes </it>were both recovered as being non-monophyletic, providing evidence for the independent origin of torrential and arboreal ecomorphs on the Indian subcontinent and in South-East Asia. Our analyses also revealed a previously unrecognized adaptive radiation of toads containing a variety of larval and adult ecomorphs. Molecular dating estimates and biogeographic analyses indicate that the early diversification of this clade happened in the Western Ghats and Sri Lanka during the Late Oligocene to Early Miocene.</p> <p>Conclusion</p> <p>Paleoclimate reconstructions have shown that the Early Neogene of India was marked by major environmental changes, with the transition from a zonal- to the current monsoon-dominated climate. After arrival in the Western Ghats-Sri Lanka hotspot, toads diversified <it>in situ</it>, with only one lineage able to successfully disperse out of these mountains. Consequently, higher taxonomic level endemism on the Indian Subcontinent is not only the result of Cretaceous isolation, but also of invasion, isolation and radiation of new elements after accretion to the Eurasian mainland.</p
- …