140 research outputs found

    Sodium-ion battery cathodes Na2FeP<sub>2</sub>O<sub>7</sub> and Na2MnP<sub>2</sub>O<sub>7</sub>:Diffusion behaviour for high rate performance

    Get PDF
    Na-ion batteries are currently the focus of significant research interest due to the relative abundance of sodium and its consequent cost advantages.</p

    Sodium manganese fluorosulphate with a triplite structure

    Get PDF
    The crystal structure of the NaMnSO4F fluorosulphate phase prepared by low-temperature solid-state synthesis has been solved and refined by the Rietveld analysis of synchrotron X-ray powder diffraction data. Isostructural to the naturally occurring triplite family of minerals, this compound crystallizes in monoclinic C2/c symmetry (#15) with unit cell parameters of a = 13.77027(17), b = 6.63687(8), c = 10.35113(14) Ã…, = 121.4795(3) and V = 806.78(2) Ã…3. Its structure is built of edge-sharing chains of distorted MO4F2 octahedra, which are interconnected by constituent SO4 tetrahedra to form a robust three-dimensional polyanionic framework. MO4F2 octahedra are randomly occupied by Na and Mn with close to 1:1 occupancy. This random mixing of cations among polyhedral building blocks means that there are no channels for Na-ion conduction, rendering it electrochemically inactive. The structure is discussed and compared to other known alkali metal fluorosulphates as well as to naturally occurring triplite-type minerals

    In-depth mesocrystal formation analysis of microwave-assisted synthesis of LiMnPO4nanostructures in organic solution

    Get PDF
    In the present work, we report on the preparation of LiMnPO4 (lithiophilite) nanorods and mesocrystals composed of self-assembled rod subunits employing microwave-assisted precipitation with processing times on the time scale of minutes. Starting from metal salt precursors and H3PO4 as phosphate source, single-phase LiMnPO4 powders with grain sizes of approx. 35 and 65 nm with varying morphologies were obtained by tailoring the synthesis conditions using rac-1-phenylethanol as solvent. The mesocrystal formation, microstructure and phase composition were determined by electron microscopy, nitrogen physisorption, X-ray diffraction (including Rietveld refinement), dynamic light scattering, X-ray absorption and X-ray photoelectron spectroscopy, and other techniques. In addition, we investigated the formed organic matter by gas chromatography coupled with mass spectrometry in order to gain a deeper understanding of the dissolution\u2013precipitation process. Also, we demonstrate that the obtained LiMnPO4 nanocrystals can be redispersed in polar solvents such as ethanol and dimethylformamide and are suitable as building blocks for the fabrication of nanofibers via electrospinning

    Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries

    Get PDF
    Although nickel-based polyanionic compounds are expected to exhibit a high operating voltage for batteries based on the Ni2+/3+ redox couple activity, some rare experimental studies on the electrochemical performance of these materials are reported, resulting from the poor kinetics of the bulk materials in both Li and Na nonaqueous systems. Herein, the electrochemical activity of the Ni2+/3+ redox couple in the mixed-polyanionic framework Na4Ni3(PO4)2(P2O7) is reported for the first time. This novel material exhibits a remarkably high operating voltage when cycled in sodium cells in both carbonate- and ionic liquid-based electrolytes. The application of a carbon coating and the use of an ionic liquid-based electrolyte enable the reversible sodium ion (de-)insertion in the host structure accompanied by the redox activity of Ni2+/3+ at operating voltages as high as 4.8 V vs Na/Na+. These results present the realization of Ni-based mixed polyanionic compounds with improved electrochemical activity and pave the way for the discovery of new Na-based high potential cathode materials

    Unlocking the potential of weberite-type metal fluorides in electrochemical energy storage

    Get PDF
    Sodium-ion batteries (NIBs) are a front-runner among the alternative battery technologies suggested for substituting the state-of-the-art lithium-ion batteries (LIBs). The specific energy of Na-ion batteries is significantly lower than that of LIBs, which is mainly due to the lower operating potentials and higher molecular weight of sodium insertion cathode materials. To compete with the high energy density of LIBs, high voltage cathode materials are required for NIBs. Here we report a theoretical investigation on weberite-type sodium metal fluorides (SMFs), a new class of high voltage and high energy density materials which are so far unexplored as cathode materials for NIBs. The weberite structure type is highly favorable for sodium-containing transition metal fluorides, with a large variety of transition metal combinations (M, M’) adopting the corresponding Na2MM’F7 structure. A series of known and hypothetical compounds with weberite-type structure were computationally investigated to evaluate their potential as cathode materials for NIBs. Weberite-type SMFs show two-dimensional pathways for Na+ diffusion with surprisingly low activation barriers. The high energy density combined with low diffusion barriers for Na+ makes this type of compounds promising candidates for cathode materials in NIBs

    Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors

    Get PDF
    High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti2C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes. By utilizing the pseudocapacitance as a negative electrode, the prototype Na-ion full cell consisting of an alluaudite Na2Fe2(SO4)3 positive electrode and an MXene Ti2C negative electrode operates at a relatively high voltage of 2.4V and delivers 90 and 40mAhg-1 at 1.0 and 5.0Ag -1 (based on the weight of the negative electrode), respectively, which are not attainable by conventional electrochemical energy storage systems

    Li1.5La1.5MO6 (M = W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries

    Get PDF
    Solid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, Li1.5La1.5MO6 (M = W6+, Te6+), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1 V, enabling application as an anode (initial specific capacity >200 mAh g-1 with remarkably low volume change of ∼0.2%). By contrast, substitution of tungsten with tellurium induces redox stability, directing the functionality of the perovskite towards a solid-state electrolyte with electrochemical stability up to 5 V and a low activation energy barrier (<0.2 eV) for microscopic lithium-ion diffusion. Characterisation across multiple length- and time-scales allows interrogation of the structure-property relationships in these materials and preliminary examination of a solid-state cell employing both compositions suggests lattice-matching avenues show promise for all-solid-state batteries

    Structural and electrochemical investigation of binary Na2Fe1-xZnxP2O7 (0 ≤ x ≤ 1) pyrophosphate cathodes for sodium-ion batteries

    No full text
    International audienceTransition metal pyrophosphate material forms a robust polyanionic cathode family for sodium-ion batteries. Here, binary Na2(Fe1-yMny)P2O7 (0 ≤ y ≤ 1) system has been recently investigated by different groups, as Na2FeP2O7 is reported as a low-cost cathode with promising electrochemical performance and thermal stability. While the isostructural Na2FeP2O7 and Na2MnP2O7 assume triclinic P1‾ (#2) framework, pyrophosphate system shows structural diversity/polymorphism. Considering this, we have investigated the binary Na2(Fe1-xZnx)P2O7 (0 ≤ x ≤ 1) pyrophosphate family with anisostructural end members Na2FeP2O7 (P1‾, #2) and Na2ZnP2O7 (P42/n, #86). The current study reports solution combustion as well as solid-state preparation of novel Na2(Fe1-xZnx)P2O7 (0 ≤ x ≤ 1) family of materials, their structural and electrochemical characterizations. The degree of solid-solution formation and effect of Zn on Fe-redox activity in Na2(Fe1-xZnx)P2O7 (x = 0, 0.25) cathodes has been examined using electrochemical titration techniques such as galvanostatic intermittent titration (GITT) and potentiostatic intermittent titration (PITT) mode. © 2019 Elsevier Inc
    • …
    corecore