342 research outputs found

    Teleportation of continuous variable polarisation states

    Get PDF
    This paper discusses methods for the optical teleportation of continuous variable polarisation states. We show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of optical polarisation states can be performed. Restricting ourselves to 3 squeezed beams, we demonstrate that polarisation state teleportation can still exceed the classical limit. The 3-squeezer schemes involve either the use of quantum non-demolition measurement or biased entanglement generated from a single squeezed beam. We analyse the efficacies of these schemes in terms of fidelity, signal transfer coefficients and quantum correlations

    Security of quantum cryptography using balanced homodyne detection

    Full text link
    In this paper we investigate the security of a quantum cryptographic scheme which utilizes balanced homodyne detection and weak coherent pulse (WCP). The performance of the system is mainly characterized by the intensity of the WCP and postselected threshold. Two of the simplest intercept/resend eavesdropping attacks are analyzed. The secure key gain for a given loss is also discussed in terms of the pulse intensity and threshold.Comment: RevTeX4, 8pages, 7 figure

    Purity of Gaussian states: measurement schemes and time-evolution in noisy channels

    Get PDF
    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme is tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.Comment: 9 Pages, 6 Figures; minor errors correcte

    Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers

    Full text link
    Continuous-variable quantum key distribution protocols, based on Gaussian modulation of the quadratures of coherent states, have been implemented in recent experiments. A present limitation of such systems is the finite efficiency of the detectors, which can in principle be compensated for by the use of classical optical preamplifiers. Here we study this possibility in detail, by deriving the modified secret key generation rates when an optical parametric amplifier is placed at the output of the quantum channel. After presenting a general set of security proofs, we show that the use of preamplifiers does compensate for all the imperfections of the detectors when the amplifier is optimal in terms of gain and noise. Imperfect amplifiers can also enhance the system performance, under conditions which are generally satisfied in practice.Comment: 11 pages, 7 figures, submitted to J. Phys. B (special issue on Few Atoms Optics

    Coherent pulse implementations of quantum cryptography protocols resistant to photon number splitting attacks

    Get PDF
    A new class of quantum cryptography (QC) protocols that are robust against the most general photon number splitting attacks in a weak coherent pulse implementation has been recently proposed. In this article we give a quite exhaustive analysis of several eavesdropping attacks on these schemes. The eavesdropper (Eve) is supposed to have unlimited technological power while the honest parties (Alice and Bob) use present day technology, in particular an attenuated laser as an approximation of a single-photon source. They exploit the nonorthogonality of quantum states for decreasing the information accessible to Eve in the multi-photon pulses accidentally produced by the imperfect source. An implementation of some of these protocols using present day technology allow for a secure key distribution up to distances of \sim 150 km. We also show that strong-pulse implementations, where a strong pulse is included as a reference, allow for key distribution robust against photon number splitting attacks.Comment: 16 pages, 11 figure

    A Hopf laboratory for symmetric functions

    Full text link
    An analysis of symmetric function theory is given from the perspective of the underlying Hopf and bi-algebraic structures. These are presented explicitly in terms of standard symmetric function operations. Particular attention is focussed on Laplace pairing, Sweedler cohomology for 1- and 2-cochains, and twisted products (Rota cliffordizations) induced by branching operators in the symmetric function context. The latter are shown to include the algebras of symmetric functions of orthogonal and symplectic type. A commentary on related issues in the combinatorial approach to quantum field theory is given.Comment: 29 pages, LaTeX, uses amsmat

    Atmospheric Channel Characteristics for Quantum Communication with Continuous Polarization Variables

    Full text link
    We investigate the properties of an atmospheric channel for free space quantum communication with continuous polarization variables. In our prepare-and-measure setup, coherent polarization states are transmitted through an atmospheric quantum channel of 100m length on the roof of our institute's building. The signal states are measured by homodyne detection with the help of a local oscillator (LO) which propagates in the same spatial mode as the signal, orthogonally polarized to it. Thus the interference of signal and LO is excellent and atmospheric fluctuations are autocompensated. The LO also acts as spatial and spectral filter, which allows for unrestrained daylight operation. Important characteristics for our system are atmospheric channel influences that could cause polarization, intensity and position excess noise. Therefore we study these influences in detail. Our results indicate that the channel is suitable for our quantum communication system in most weather conditions.Comment: 6 pages, 4 figures, submitted to Applied Physics B following an invitation for the special issue "Selected Papers Presented at the 2009 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society

    The Security of Practical Quantum Key Distribution

    Full text link
    Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on the eavesdropper's power. The first two sections provide a concise up-to-date review of QKD, biased toward the practical side. The rest of the paper presents the essential theoretical tools that have been developed to assess the security of the main experimental platforms (discrete variables, continuous variables and distributed-phase-reference protocols).Comment: Identical to the published version, up to cosmetic editorial change

    Noiseless Linear Amplification and Distillation of Entanglement

    Full text link
    The idea of signal amplification is ubiquitous in the control of physical systems, and the ultimate performance limit of amplifiers is set by quantum physics. Increasing the amplitude of an unknown quantum optical field, or more generally any harmonic oscillator state, must introduce noise. This linear amplification noise prevents the perfect copying of the quantum state, enforces quantum limits on communications and metrology, and is the physical mechanism that prevents the increase of entanglement via local operations. It is known that non-deterministic versions of ideal cloning and local entanglement increase (distillation) are allowed, suggesting the possibility of non-deterministic noiseless linear amplification. Here we introduce, and experimentally demonstrate, such a noiseless linear amplifier for continuous-variables states of the optical field, and use it to demonstrate entanglement distillation of field-mode entanglement. This simple but powerful circuit can form the basis of practical devices for enhancing quantum technologies. The idea of noiseless amplification unifies approaches to cloning and distillation, and will find applications in quantum metrology and communications.Comment: Submitted 10 June 200

    Quantum state reconstruction of the single-photon Fock state

    Full text link
    We have reconstructed the quantum state of optical pulses containing single photons using the method of phase-randomized pulsed optical homodyne tomography. The single-photon Fock state |1> was prepared using conditional measurements on photon pairs born in the process of parametric down-conversion. A probability distribution of the phase-averaged electric field amplitudes with a strongly non-Gaussian shape is obtained with the total detection efficiency of (55+-1)%. The angle-averaged Wigner function reconstructed from this distribution shows a strong dip reaching classically impossible negative values around the origin of the phase space.Comment: 4 pages, 4 figures, to appear in Physical Review Letters. Avoid downloading PDF due to extremely poor figure resolution. Use Postscrip
    corecore