771 research outputs found

    Evolution of hydrothermal regime along a crustal shear zone, Tinos island, Greece

    Get PDF
    International audienceStructural, cathodoluminescence and SIMS ή18O analyses of quartz-calcite veins are combined to constrain the evolution in space and time of fluid infiltration in an exhuming detachment shear zone (Tinos Island, Cyclades, Greece). Careful description of vein arrays shows that the plumbing system evolved into an interconnected network just beneath the ductile-to-brittle transition. Micro-textures of quartz and calcite infilling veins display deformed relics and newly precipitated grains. High-resolution ή18O mapping in relics yield a steady quartz-calcite fractionation of 2 ‰ at ~400 °C, whereas fractionation increases in neo-grains from 2 to 5 ‰ in 190 m toward the fault, or a ~150 °C temperature fall. Cooling is associated with a shift of fluid stable isotope signature from 15 ‰ to 0 ‰ beneath the detachment. Results are interpreted as advective removal of heat by massive infiltration of surface-derived fluids over depths of 10-15 km. Fluid penetration was promoted by the coalescence of late ductile-early brittle veins, as the exhuming footwall crossed the ductile-brittle transition. Only small amounts of fluids penetrated the ductile crust beneath the transitional rheology

    A new customised placental weight standard redefines the relationship between maternal obesity and extremes of placental size and is more closely associated with pregnancy complications than an existing population standard

    Get PDF
    JW and GH were funded by the Scottish Government’s Rural and Environmental Science and Analytical Services Division (RESAS) who had no input into the content or preparation of the manuscript.Peer reviewedPostprin

    Burial and exhumation in a subduction wedge : mutual constraints from thermo-mechanical modelin and natural P-T-t data (Sch. Lustrés, W. Alps)

    No full text
    The dynamic processes leading to synconvergent exhumation of high-pressure low-temperature (HP-LT) rocks at oceanic accretionary margins, as well as the mechanisms maintaining nearly steady state regime in most accretion prisms, remain poorly understood. The present study aims at getting better constraints on the rheology, thermal conductivity, and chemical properties of the sediments in subduction zones. To reach that goal, oceanic subduction is modeled using a forward visco-elasto-plastic thermomechanical code (PARA(O)VOZ-FLAC algorithm), and synthetic pressure-temperature-time (P-T-t) paths, predicted from numerical experiments, are compared with natural P-T-t paths. The study is focused on the well constrained Schistes LustrĂ©s complex (SL: western Alps) which is thought to represent the fossil accretionary wedge of the Liguro-Piemontese Ocean. For convergence rates comparable to Alpine subduction rates (∌3 cm yr−1), the best-fitting results are obtained for high-viscosity, low-density wedge sediments and/or a strong lower continental crust. After a transition period of 3-5 Ma the modeled accretionary wedges reach a steady state which lasts over 20 Ma. Over that time span a significant proportion (∌35%) of sediments entering the wedge undergoes P-T conditions typical of the SL complex (∌15-20 kbar; 350-450°C) with similar P-T loops. Computed exhumation rates (<6 mm yr−1) are in agreement with observations (1-5 mm yr−1). In presence of a serpentinite layer below the oceanic crust, exhumation of oceanic material takes place at rates approaching 3 mm yr−1. In all experiments the total pressure in the accretionary wedge never deviated by more than ±10% from the lithostatic component

    Modular Equations and Distortion Functions

    Full text link
    Modular equations occur in number theory, but it is less known that such equations also occur in the study of deformation properties of quasiconformal mappings. The authors study two important plane quasiconformal distortion functions, obtaining monotonicity and convexity properties, and finding sharp bounds for them. Applications are provided that relate to the quasiconformal Schwarz Lemma and to Schottky's Theorem. These results also yield new bounds for singular values of complete elliptic integrals.Comment: 23 page

    Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries

    Get PDF
    A method of in situ hybridization for visualizing individual human chromosomes from pter to qter, both in metaphase spreads and interphase nuclei, is reported. DNA inserts from a single chromosomal library are labeled with biotin and partially preannealed with a titrated amount of total human genomic DNA prior to hybridization with cellular or chromosomal preparations. The cross-hybridization of repetitive sequences to nontargeted chromosomes can be markedly suppressed under appropriate preannealing conditions. The remaining single-stranded DNA is hybridized to specimens of interest and detected with fluorescent or enzymelabeled avidin conjugates following post-hybridization washes. DNA inserts from recombinant libraries for chromosomes 1, 4, 7, 8, 13, 14, 18, 20, 21, 22, and X were assessed for their ability to decorate specifically their cognate chromosome; most libraries proved to be highly specific. Quantitative densitometric analyses indicated that the ratio of specific to nonspecific hybridization signal under optimal preannealing conditions was at least 8:1. Interphase nuclei showed a cohesive territorial organization of chromosomal domains, and laserscanning confocal fluorescence microscopy was used to aid the 3-D visualization of these domains. This method should be useful for both karyotypic studies and for the analysis of chromosome topography in interphase cells

    Quaternary geology of the Northern Great Plains

    Get PDF
    The Great Plains physiographic province lies east of the Rocky Mountains and extends from southern Alberta and Saskatchewan nearly to the United States-Mexico border. This chapter covers only the northern part of the unglaciated portion of this huge region, from Oklahoma almost to the United StatesCanada border, a portion that herein will be referred to simply as the Northern Great Plains (Fig. 1). This region is in the rain shadow of the Rocky Mountains. Isoheyets are roughly longitudinal, and mean annual precipitation decreases from about 750 mm at the southeastern margin to less than 380 mm in the western and northern parts (Fig. 2). Winters typically are cold with relatively little precipitation, mostly as snow; summers are hot with increased precipitation, chiefly associated with movement of Pacific and Arctic air masses into warm, humid air masses from the Gulf of Mexico. Vegetation is almost wholly prairie grassland, due to the semiarid, markedly seasonal climate. The Northern Great Plains is a large region of generally low relief sloping eastward from the Rocky Mountains toward the Missouri and Mississippi Rivers. Its basic bedrock structure is a broad syncline, punctuated by the Black Hills and a few smaller uplifts, and by structural basins such as the Williston, Powder River, and Denver-Julesburg Basins (Fig. 3). Its surface bedrock is chiefly Cretaceous and Tertiary sediments, with small areas of older rocks in the Black Hills, central Montana, and eastern parts of Wyoming, Kansas, and Oklahoma. During the Laramide orogeny (latest Cretaceous through Eocene), while the Rocky Mountains and Black Hills were rising, synorogenic sediments (frequently with large amounts of volcanic ash from volcanic centers in the Rocky Mountains) were deposited in the subsiding Denver-Julesburg, Powder River, and other basins. From Oligocene to Miocene time, sedimentation generally slowed with declining tectonism and volcanism in the Rocky Mountains. However, since the later Miocene, epeirogenic uplift, probably associated with the East Pacific Rise, affected the Great Plains and particularly the Rocky Mountains. During the last 10 m.y. the Rocky Mountain front has risen 1.5 to 2 km, and the eastern margin of the Great Plains 100 to 500 m (Gable and Hatton, 1983), with half to one-quarter of these amounts during the last 5 m.y. Thus, during the later Miocene the Great Plains became a huge aggrading piedmont sloping gently eastward from the Rocky Mountains and Black Hills, with generally eastward drainage, on which the Ogallala Formation and equivalents was deposited. The Ogallala underlies the High Plains Surface, the highest and oldest geomorphic surface preserved in this region. It has been completely eroded along some parts of the western margin of the region (e.g., the Colorado Piedmont), but eastward, it (and its equivalents, such as the Flaxville gravels in Montana) locally is preserved as caprock or buried by Quaternary sediments (Alden, 1924, 1932; Howard, 1960; Stanley, 1971, 1976; Pearl, 1971; Scott, 1982; Corner and Diffendal, 1983; Diffendal and Corner, 1984; Swinehart and others, 1985; Aber, 1985). During the Pliocene, regional aggradation slowly changed to dissection by the principal rivers. In the western part of the region the rivers flowed eastward, but the continental drainage divide Figure 3. Major bedrock structures of the Northern Great Plains. extended northeast from the Black Hills through central South Dakota, far south of its present position. The ancestral upper Missouri, Little Missouri, Yellowstone, and Cheyenne Rivers drained northeast to Hudson Bay, whereas the ancestral White, Platte, and Arkansas Rivers went to the Gulf of Mexico (Fig 4A). Their courses are marked by scattered surface and subsurface gravel remnants; in Montana and North Dakota, deposits of the preglacial Missouri River and its tributaries are buried deeply beneath glacial and other sediments (Howard, 1960; Bluemle, 1972)

    Red and green loops help uncover missing feedbacks in a coral reef social–ecological system

    Get PDF
    Social–ecological systems (SES) exhibit complex cause‐and‐effect relationships. Capturing, interpreting, and responding to signals that indicate changes in ecosystems is key for sustainable management in SES. Breaks in this signal–response chain, when feedbacks are missing, will allow change to continue until a point when abrupt ecological surprises may occur. In these situations, societies and local ecosystems can often become uncoupled. In this paper, we demonstrate how the red loop–green loop (RL–GL) concept can be used to uncover missing feedbacks and to better understand past social–ecological dynamics. Reinstating these feedbacks in order to recouple the SES may ultimately create more sustainable systems on local scales. The RL–GL concept can uncover missing feedbacks through the characterization of SES dynamics along a spectrum of human resource dependence. Drawing on diverse qualitative and quantitative data sources, we classify SES dynamics throughout the history of Jamaican coral reefs along the RL–GL spectrum. We uncover missing feedbacks in red‐loop and red‐trap scenarios from around the year 600 until now. The Jamaican coral reef SES dynamics have moved between all four dynamic states described in the RL–GL concept: green loop, green trap, red loop and red trap. We then propose mechanisms to guide the current unsustainable red traps back to more sustainable green loops, involving mechanisms of seafood trade and ecological monitoring. By gradually moving away from seafood exports, Jamaica may be able to return to green‐loop dynamics between the local society and their locally sourced seafood. We discuss the potential benefits and drawbacks of this proposed intervention and give indications of why an export ban may insure against future missing feedbacks and could prolong the sustainability of the Jamaican coral reef ecosystem. Our approach demonstrates how the RL–GL approach can uncover missing feedbacks in a coral reef SES, a way the concept has not been used before. We advocate for how the RL–GL concept in a feedback setting can be used to synthesize various types of data and to gain an understanding of past, present and future sustainability that can be applied in diverse social–ecological settings

    Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    Get PDF
    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.ope
    • 

    corecore