7,535 research outputs found
High-throughput synthesis of thermoelectric CaCoO films
Properties of complex oxide thin films can be tuned over a range of values as
a function of mismatch, composition, orientation, and structure. Here, we
report a strategy for growing structured epitaxial thermoelectric thin films
leading to improved Seebeck coefficient. Instead of using single-crystal
sapphire substrates to support epitaxial growth, CaCoO films are
deposited, using the Pulsed Laser Deposition technique, onto AlO
polycrystalline substrates textured by Spark Plasma Sintering. The structural
quality of the 2000 \AA thin film was investigated by Transmission Electron
Microscopy, while the crystallographic orientation of the grains and the
epitaxial relationships were determined by Electron Back Scatter Diffraction.
The use of a polycrystalline ceramic template leads to structured films that
are in good local epitaxial registry. The Seebeck coefficient is about 170
V/K at 300 K, a typical value of misfit material with low carrier density.
This high-throughput process, called combinatorial substrate epitaxy, appears
to facilitate the rational tuning of functional oxide films, opening a route to
the epitaxial synthesis of high quality complex oxides.Comment: Submitted to Applied Physics Letters (2013
BiFeO3/La0.7Sr0.3MnO3 heterostructures deposited on Spark Plasma Sintered LaAlO3 Substrates
Multiferroic BiFeO3 (BFO) / La0.7Sr0.3MnO3 heterostructured thin films were
grown by pulsed laser deposition on polished spark plasma sintered LaAlO3 (LAO)
polycrystalline substrates. Both polycrystalline LAO substrates and BFO films
were locally characterized using electron backscattering diffraction (EBSD),
which confirmed the high-quality local epitaxial growth on each substrate
grain. Piezoforce microscopy was used to image and switch the piezo-domains,
and the results are consistent with the relative orientation of the
ferroelectric variants with the surface normal. This high-throughput synthesis
process opens the routes towards wide survey of electronic properties as a
function of crystalline orientation in complex oxide thin film synthesis.Comment: 10 pages, 4 figures, Submitted to Applied Physics Letter
A matrix–free high–order solver for the numerical solution of cardiac electrophysiology
We propose a matrix-free solver for the numerical solution of the cardiac electrophysiology model consisting of the monodomain nonlinear reaction-diffusion equation coupled with a system of ordinary differential equations for the ionic species. Our numerical approximation is based on the high-order Spectral Element Method (SEM) to achieve accurate numerical discretization while employing a much smaller number of Degrees of Freedom than first-order Finite Elements. We combine vectorization with sum- factorization, thus allowing for a very efficient use of high-order polynomials in a high performance computing framework. We validate the effectiveness of our matrix-free solver in a variety of applications and perform different electrophysiological simulations ranging from a simple slab of cardiac tissue to a realistic four-chamber heart geometry. We compare SEM to SEM with Numerical Integration (SEM-NI), showing that they provide comparable results in terms of accuracy and efficiency. In both cases, increasing the local polynomial degree p leads to better numerical results and smaller computational times than reducing the mesh size h. We also implement a matrix-free Geometric Multigrid preconditioner that results in a comparable number of linear solver iterations with respect to a state-of-the-art matrix-based Algebraic Multigrid preconditioner. As a matter of fact, the matrix-free solver proposed here yields up to 45x speed-up with respect to a conventional matrix-based solver. (c) 2023 Elsevier Inc. All rights reserved
A matrix–free high–order solver for the numerical solution of cardiac electrophysiology
We propose a matrix-free solver for the numerical solution of the cardiac electrophysiology model consisting of the monodomain nonlinear reaction-diffusion equation coupled with a system of ordinary differential equations for the ionic species. Our numerical approximation is based on the high-order Spectral Element Method (SEM) to achieve accurate numerical discretization while employing a much smaller number of Degrees of Freedom than first-order Finite Elements. We combine vectorization with sum- factorization, thus allowing for a very efficient use of high-order polynomials in a high performance computing framework. We validate the effectiveness of our matrix-free solver in a variety of applications and perform different electrophysiological simulations ranging from a simple slab of cardiac tissue to a realistic four-chamber heart geometry. We compare SEM to SEM with Numerical Integration (SEM-NI), showing that they provide comparable results in terms of accuracy and efficiency. In both cases, increasing the local polynomial degree p leads to better numerical results and smaller computational times than reducing the mesh size h. We also implement a matrix-free Geometric Multigrid preconditioner that results in a comparable number of linear solver iterations with respect to a state-of-the-art matrix-based Algebraic Multigrid preconditioner. As a matter of fact, the matrix-free solver proposed here yields up to 45x speed-up with respect to a conventional matrix-based solver. (c) 2023 Elsevier Inc. All rights reserved
Practice of walking and its association with perceived environment among elderly Brazilians living in a region of low socioeconomic level
<p>Abstract</p> <p>Background</p> <p>The aim of this study was analyze associations between the practice of walking and environmental perception among elderly Brazilians in a region of low socioeconomic level.</p> <p>Methods</p> <p>A cross-sectional study was conducted among 385 elderly people aged 60 years and over. To evaluate walking, the International Physical Activity Questionnaire (IPAQ), long version (leisure and transport modules) was used. The environment was evaluated by means of the Neighborhood Environmental Walkability Scale (NEWS) (adapted Brazilian version). For the statistical analysis, multiple logistic regression models were created separately for men and women. The practice of at least 150 minutes a week of walking was the dependent variable, and the variables of environmental perception were the independent variables. All the models were controlled for schooling level and age.</p> <p>Results</p> <p>The proportion of elderly people active in walking was 56.9% for the men and 26.4% for the women. The perception of the presence of soccer fields (OR = 4.12) and their proximity, within ten minutes' walk from home (OR = 3.43), were associated with the practice of walking among the men. The perception of the presence of public squares (OR = 4.70) and the proximity of primary healthcare units, within ten minutes' walk from home (OR = 3.71), were associated with the practice of walking among the women. An association with adequate perception of vehicle traffic remained at the threshold of significance for the women.</p> <p>Conclusion</p> <p>Accessibility of leisure structures such as football fields and public squares and of health services such as primary healthcare units were important environmental variables associated with the practice of walking among elderly people living in a region of low socioeconomic level in Brazil. These variables need to be taken into consideration when aiming to promote the practice of walking among elderly people living in similar regions.</p
Development and Validation of a Submodel for Thermal Exchanges in the Hydraulic Circuits of a Global Engine Model
[EN] To face the current challenges of the automotive industry, there is a need for computational models capable to simulate the engine behavior under low-temperature and low-pressure conditions. Internal combustion engines are
complex and have interconnected systems where many processes take place and influence each other. Thus, a global approach to engine simulation is suitable to study the entire engine performance. The circuits that distribute the hydraulic fluids -liquid fuels, coolants and lubricants- are critical subsystems of the engine. This work presents a 0D model which was developed and set up to make possible the simulation of hydraulic circuits in a global engine model. The model is capable of simulating flow and pressure distributions as well as heat transfer processes in a circuit. After its development, the thermo-hydraulic model was implemented in a physical based engine model called Virtual Engine Model (VEMOD), which takes into account all the relevant relations among subsystems. In the present paper, the thermo-hydraulic model is described and then it is used to simulate oil and coolant circuits of a diesel engine. The objective of the work is to validate the model under steady-state and transient operation, with focus on the thermal evolution of oil and coolant. For validation under steady-state conditions, 22 operating points were measured and simulated, some of them in cold environment. In general, good agreement was obtained between simulation and experiments. Next, the WLTP driving cycle was simulated starting from warmed-up conditions and from ambient temperature. Results were compared with the experiment, showing that modeled trends were close to those experimentally measured. Thermal evolutions of oil and coolant
were predicted with mean errors between 0.7 °C and 2.1 °C. In particular, the warm-up phase was satisfactorily modeled.This research has been partially funded by the European Union’s Horizon 2020 Framework Programme for research, technological development and demonstration under grant agreement 723976 (“DiePeR”) and by the Spanish government under the grant agreement TRA2017-89894-R. Josep SalvadorIborra was supported by Universitat Politècnica de València through the contract FPI-S2-2016-1357 of the program PAID01-16. The authors wish to thank Renault SAS, especially P.
Mallet and E. Gaïffas, for supporting this research. Jaime Monfort San Segundo is acknowledged for his helpful collaboration in the code implementationBroatch, A.; Olmeda, P.; Martín, J.; Salvador-Iborra, J. (2018). Development and Validation of a Submodel for Thermal Exchanges in the Hydraulic Circuits of a Global Engine Model. SAE Technical Papers. https://doi.org/10.4271/2018-01-0160
- …