4,630 research outputs found

    Firewood, food and niche construction : the potential role of Mesolithic hunter-gatherers in actively structuring Scotland's woodlands.

    Get PDF
    Over the past few decades the potential role of Mesolithic hunter–gatherers in actively constructing their own niches, through the management of wild plants, has frequently been discussed. It is probable that Mesolithic hunter–gatherers systematically exploited specific woodland resources for food and fuel and influenced the ‘natural’ abundance or distribution of particular species within Mesolithic environments. Though there has been considerable discussion of the pollen evidence for potential small-scale human-woodland manipulation in Mesolithic Scotland, the archaeobotanical evidence for anthropogenic firewood and food selection has not been discussed in this context. This paper assesses the evidence for the active role of Mesolithic hunter–gatherer communities in systematically exploiting and managing woodlands for food and fuel in Scotland. While taphonomic factors may have impacted on the frequency of specific species in archaeobotanical assemblages, it is suggested that hunter–gatherers in Mesolithic Scotland were systematically using woodland plants, and in particular hazel and oak, for food and fuel. It is argued that the pollen evidence for woodland management is equivocal, but hints at the role of hunter–gatherers in shaping the structure of their environments, through the maintenance or creation of woodland clearings for settlement or as part of vegetation management strategies. It is proposed that Mesolithic hunter–gatherers may have actively contributed to niche construction and that the systematic use of hazel and oak as a fuel may reflect the deliberate pruning of hazel trees to increase nut-yields and the inadvertent – or perhaps deliberate – coppicing of hazel and oak during greenwood collection

    Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe

    Get PDF
    Acknowledgements We thank the Archaeological State Museum Schleswig-Holstein, the Archaeological State Offices of Brandenburg, Lower Saxony and Saxony and the following individuals who provided sample material: Betty Arndt, Jo¨rg Ewersen, Frederick Feulner, Susanne Hanik, Ru¨diger Krause, Jochen Reinhard, Uwe Reuter, Karl-Heinz Ro¨hrig, Maguerita Scha¨fer, Jo¨rg Schibler, Reinhold Schoon, Regina Smolnik, Thomas Terberger and Ingrid Ulbricht. We are grateful to Ulrich Schmo¨lcke, Michael Forster, Peter Forster and Aikaterini Glykou for their support and comments on the manuscript. We also thank many institutions and individuals that provided sample material and access to collections, especially the curators of the Museum fu¨r Naturkunde, Berlin; Muse´um National d0 Histoire Naturelle, Paris; Smithsonian Institution, National Museum of Natural History, Washington D.C.; Zoologische Staatssammlung, Mu¨nchen; Museum fu¨r Haustierkunde, Halle; the American Museum of Natural History, New-York. This work was funded by the Graduate School ‘Human Development in Landscapes’ at Kiel University (CAU) and supported by NERC project Grant NE/F003382/1. Radiocarbon dating was carried out at the Leibniz Laboratory, CAU. This work is licensed under a Creative Commons AttributionNonCommercial-NoDerivs 3.0 Unported License.Peer reviewedPublisher PD

    Transactional Economics: Victor Goldberg\u27s \u3ci\u3eFraming Contract Law\u3c/i\u3e

    Get PDF
    Professor Mark Gergen: Thank you. It is an honor to speak to this group and to be on a panel with Stewart Macaulay, Keith Rowley, and Victor Goldberg. I have an enormous amount of respect for the three. Keith had the misfortune of being a student of mine in Federal Income Tax. Framing Contract Law offers a wealth of information about familiar cases. Victor argues that in construing contracts, courts should be attentive to how people engineer contracts to minimize transaction costs. He shows that courts often err in this regard, imposing unnecessary costs. To make his case, Victor delves deeply into the background of cases, many that will be familiar to anyone who has taught contracts, and turns up much that is new and interesting. I am going to follow Victor\u27s lead by focusing on two cases that he discusses. I will briefly summarize what he says about the cases. I will then use the cases as a springboard to make my points, which are different from Victor\u27s points

    A Construct Validation and Extension of the Adolescent Attachment Questionnaire (AAQ)

    Get PDF
    The adolescent attachment questionnaire (AAQ) is designed to measure adolescent attachment patterns through three components: availability, goal-corrected partnership, and angry-distress. To date there has not been a confirmatory factor analysis conducted to determine the fit of data to this theoretical model on a UK sample. This study aimed to assess the construct validity of the AAQ through cognitive interviews and a confirmatory factor analysis. Participants were adolescents aged between 12 and 16. Results from the cognitive interviews indicated that participants could correctly interpret the items. Confirmatory factor analysis showed a good fit of data to a three-factor model. Therefore, it can be concluded that the AAQ is a valid measure for attachment patterns in adolescents, provided that attachment is approached as a three-factor concept

    On the α−\alpha-decay of deformed actinide nuclei

    Full text link
    α−\alpha-decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semi-classical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which are essentially constant for all even--even actinide nuclei. These same amplitudes also give good results for the known anisotropic α−\alpha-particle emission of the favored decays of odd nuclei in the same mass region. PACS numbers: 23.60.+e, 24.10.Eq, 27.90.+bComment: 5 pages, latex (revtex style), 2 embedded postscript figures uuencoded gz-compressed .tar file To appear in Physical Review Letter

    Dating of the oldest continental sediments from the Himalayan foreland basin

    Get PDF
    A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate(1-4). Continental sediments 55 Myr old found in a foreland basin in Pakistan(5) are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision(6-8), timing and mechanisms of exhumation(9,10) and uplift(11), as well as our general understanding of foreland basin dynamics(12). But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units(5). Here we present dates of 257 detrital grains of white mica from this succession, using the Ar-40-(39) Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated

    Stationary Flows of the Parabolic Potential Barrier in Two Dimensions

    Full text link
    In the two-dimensional isotropic parabolic potential barrier V(x,y)=V0−mγ2(x2+y2)/2V(x, y)=V_0 -m\gamma^2 (x^2+y^2)/2, though it is a model of an unstable system in quantum mechanics, we can obtain the stationary states corresponding to the real energy eigenvalue V0V_0. Further, they are infinitely degenerate. For the first few eigenstates, we will find the stationary flows round a right angle that are expressed by the complex velocity potentials W=±γz2/2W=\pm\gamma z^2/2.Comment: 12 pages, AmS-LaTeX, 4 figure
    • …
    corecore