Abstract

In the two-dimensional isotropic parabolic potential barrier V(x,y)=V0mγ2(x2+y2)/2V(x, y)=V_0 -m\gamma^2 (x^2+y^2)/2, though it is a model of an unstable system in quantum mechanics, we can obtain the stationary states corresponding to the real energy eigenvalue V0V_0. Further, they are infinitely degenerate. For the first few eigenstates, we will find the stationary flows round a right angle that are expressed by the complex velocity potentials W=±γz2/2W=\pm\gamma z^2/2.Comment: 12 pages, AmS-LaTeX, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019