302 research outputs found

    Fluorescence suppression using micro-scale spatially offset Raman spectroscopy

    Get PDF
    We present a new concept of fluorescence suppression in Raman microscopy based on micro-spatially offset Raman spectroscopy which is applicable to thin stratified turbid (diffusely scattering) matrices permitting the retrieval of the Raman signals of sublayers below intensely fluorescing turbid over-layers. The method is demonstrated to yield good quality Raman spectra with dramatically suppressed fluorescence backgrounds enabling the retrieval of Raman sublayer signals even in situations where conventional Raman microscopy spectra are fully overwhelmed by intense fluorescence. The concept performance was studied theoretically using Monte Carlo simulations indicating the potential of up to an order or two of magnitude suppression of overlayer fluorescence backgrounds relative to the Raman sublayer signals. The technique applicability was conceptually demonstrated on layered samples involving paints, polymers and stones yielding fluorescence suppression factors between 12 to above 430. The technique has potential applications in a number of analytical areas including cultural heritage, archaeology, polymers, food, pharmaceutical, biological, biomedical, forensics and catalytic sciences and quality control in manufacture

    Analytical capability of defocused μ-SORS in the chemical interrogation of thin turbid painted layers

    Get PDF
    © The Author(s) 2015. A recently developed micrometer-scale spatially offset Raman spectroscopy (m-SORS) method provides a new analytical capability for investigating non-destructively the chemical composition of sub-surface, micrometer-scale thickness, diffusely scattering layers at depths beyond the reach of conventional confocal Raman microscopy. Here, we demonstrate experimentally, for the first time, the capability of μ-SORS to determine whether two detected chemical components originate from two separate layers or whether the two components are mixed together in a single layer. Such information is important in a number of areas, including conservation of cultural heritage objects, and is not available, for highly turbid media, from conventional Raman microscopy, where axial (confocal) scanning is not possible due to an inability to facilitate direct imaging within the highly scattering sample. This application constitutes an additional capability for μ-SORS in addition to its basic capacity to determine the overall chemical make-up of layers in a turbid system

    Interpretation of uniocular and binocular trials of glaucoma medications: an observational case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To predict the effectiveness of topical glaucoma medications based on initial uniocular and binocular treatment. To test a traditional hypothesis that effectiveness following a uniocular trial is associated with the change in IOP in the initially treated eye minus the change in the initially untreated eye. To determine whether uniocular or binocular treatment trials are superior.</p> <p>Methods</p> <p>Based on a review of medical records, we identified 168 instances in 154 patients with bilateral primary open angle glaucoma of initial uniocular use of a topical glaucoma medication with well-documented intraocular pressure (IOP) readings at baseline (IOP<sub>A</sub>), during the trial (IOP<sub>B</sub>), and at follow-up (IOP<sub>C</sub>). Abstracted data included demographic data, IOP, and medication use. Predictors of the IOP following the trial (IOP<sub>C</sub>) in each eye were identified by multivariable linear regression. In 70 cases, the predictive ability of initial uniocular and binocular treatment could be directly compared.</p> <p>Results</p> <p>In a multivariable analysis, the follow-up pressure in the initially treated eye (IOP<sub>1C</sub>) was directly correlated with treated eye IOP during initial uniocular use (IOP<sub>1B</sub>, p < 0.001). In a multivariable analysis, the follow-up pressure in the initially untreated eye (IOP<sub>2C</sub>) was directly correlated with its baseline IOP<sub>2A </sub>(p < 0.001), and also tended to be associated with treated IOP<sub>1B </sub>(p = 0.07). The multivariable regression coefficient (b) for the IOP change in the initially untreated eye was generally not close to the value of -1 expected by the classic teaching (for eye 1, b = 0.04, p = 0.35; for eye 2, b = 0.07, p = 0.50). In 70 cases, the uniocular and binocular trials predicted a similar fraction of the variance in follow-up IOP<sub>1C </sub>(r<sup>2 </sup>= 0.56 and 0.57, respectively) and IOP<sub>2C </sub>(r<sup>2 </sup>= 0.39 and 0.38, respectively).</p> <p>Conclusion</p> <p>1) For uniocular trials, the IOP change in the untreated eye should not be subtracted from that in the treated eye. 2) Uniocular and binocular trials have similar predictive value when interpreted correctly. Either may be selected based on clinical circumstances.</p

    Precipitable water vapour content from ESR/SKYNET sun-sky radiometers: validation against GNSS/GPS and AERONET over three different sites in Europe

    Get PDF
    The estimation of the precipitable water vapour content (W) with high temporal and spatial resolution is of great interest to both meteorological and climatological studies. Several methodologies based on remote sensing techniques have been recently developed in order to obtain accurate and frequent measurements of this atmospheric parameter. Among them, the relative low cost and easy deployment of sun-sky radiometers, or sun photometers, operating in several international networks, allowed the development of automatic estimations of W from these instruments with high temporal resolution. However, the great problem of this methodology is the estimation of the sun-photometric calibration parameters. The objective of this paper is to validate a new methodology based on the hypothesis that the calibration parameters characterizing the atmospheric transmittance at 940nm are dependent on vertical profiles of temperature, air pressure and moisture typical of each measurement site. To obtain the calibration parameters some simultaneously seasonal measurements of W, from independent sources, taken over a large range of solar zenith angle and covering a wide range of W, are needed. In this work yearly GNSS/GPS datasets were used for obtaining a table of photometric calibration constants and the methodology was applied and validated in three European ESR-SKYNET network sites, characterized by different atmospheric and climatic conditions: Rome, Valencia and Aosta. Results were validated against the GNSS/GPS and AErosol RObotic NETwork (AERONET) W estimations. In both the validations the agreement was very high, with a percentage RMSD of about 6, 13 and 8% in the case of GPS intercomparison at Rome, Aosta and Valencia, respectively, and of 8% in the case of AERONET comparison in Valencia. Analysing the results by W classes, the present methodology was found to clearly improve W estimation at low W content when compared against AERONET in terms of %bias, bringing the agreement with the GPS (considered the reference one) from a %bias of 5.76 to 0.52

    The p53 codon 72 PRO/PRO genotype may be associated with initial central visual field defects in Caucasians with primary open angle glaucoma

    Get PDF
    Background: Loss of vision in glaucoma is due to apoptotic retinal ganglion cell loss. While p53 modulates apoptosis, gene association studies between p53 variants and glaucoma have been inconsistent. In this study we evaluate the association between a p53 variant functionally known to influence apoptosis (codon 72 Pro/Arg) and the subset of primary open angle glaucoma (POAG) patients with early loss of central visual field. Methods: Genotypes for the p53 codon 72 polymorphism (Pro/Arg) were obtained for 264 POAG patients and 400 controls from the U.S. and in replication studies for 308 POAG patients and 178 controls from Australia (GIST). The glaucoma patients were divided into two groups according to location of initial visual field defect (either paracentral or peripheral). All cases and controls were Caucasian with European ancestry. Results: The p53-PRO/PRO genotype was more frequent in the U.S. POAG patients with early visual field defects in the paracentral regions compared with those in the peripheral regions or control group (p = 2.761025). We replicated this finding in the GIST cohort (p = 7.361023, and in the pooled sample (p = 6.661027) and in a meta-analysis of both the US and GIST datasets (1.361026, OR 2.17 (1.58–2.98 for the PRO allele). Conclusions: These results suggest that the p53 codon 72 PRO/PRO genotype is potentially associated with early paracentral visual field defects in primary open-angle glaucoma patients.NHMRC: This study was supported by National Institutes of Health/National Eye Institute grants: R01EY015872 (Wiggs), R01EY015473 (Pasquale), P30EY014104 (Wiggs), Research to Prevent Blindness (Wiggs, Pasquale, Realini), the Harvard Glaucoma Center of Excellence (Wiggs, Pasquale), The Massachusetts Lions Eye Research Fund (Wiggs, Pasquale), National Health & Medical Research Council Project grant 229960, the Ophthalmic Research Institute of Australia, and Glaucoma Australia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Measuring CMB spectral distortions from Antarctica with COSMO: blackbody calibrator design and performance forecast

    Get PDF
    COSMO is a ground-based instrument to measure the spectral distortions (SD) of the Cosmic Microwave Background (CMB). In this paper, we present preliminary results of electromagnetic simulations of its reference blackbody calibrator. HFSS simulations provide a calibrator reflection coefficient of R∼ 10 - 6, corresponding to an emissivity ϵ= 1 - R= 0.999999. We also provide a forecast for the instrument performance by using an ILC-based simulation. We show that COSMO can extract the isotropic Comptonization parameter (modeled as | y| = 1.77 · 10 - 6) as | y| = (1.79 ± 0.19) · 10 - 6, in the presence of the main Galactic foreground (thermal dust) and of CMB anisotropies, and assuming perfect atmospheric emission removal

    The optical design of the Litebird middle and high frequency telescope

    Get PDF
    LiteBIRD is a JAXA strategic L-class mission devoted to the measurement of polarization of the Cosmic Microwave Background, searching for the signature of primordial gravitational waves in the B-modes pattern of the polarization. The onboard instrumentation includes a Middle and High Frequency Telescope (MHFT), based on a pair of cryogenically cooled refractive telescopes covering, respectively, the 89-224 GHz and the 166-448 GHz bands. Given the high target sensitivity and the careful systematics control needed to achieve the scientific goals of the mission, optical modeling and characterization are performed with the aim to capture most of the physical effects potentially affecting the real performance of the two refractors. We describe the main features of the MHFT, its design drivers and the major challenges in system optimization and characterization. We provide the current status of the development of the optical system and we describe the current plan of activities related to optical performance simulation and validation
    • …
    corecore