27 research outputs found

    The Multifunctional Host Defense Peptide SPLUNC1 Is Critical for Homeostasis of the Mammalian Upper Airway

    Get PDF
    Otitis media (OM) is a highly prevalent pediatric disease caused by normal flora of the nasopharynx that ascend the Eustachian tube and enter the middle ear. As OM is a disease of opportunity, it is critical to gain an increased understanding of immune system components that are operational in the upper airway and aid in prevention of this disease. SPLUNC1 is an antimicrobial host defense peptide that is hypothesized to contribute to the health of the airway both through bactericidal and non-bactericidal mechanisms. We used small interfering RNA (siRNA) technology to knock down expression of the chinchilla ortholog of human SPLUNC1 (cSPLUNC1) to begin to determine the role that this protein played in prevention of OM. We showed that knock down of cSPLUNC1 expression did not impact survival of nontypeable Haemophilus influenzae, a predominant causative agent of OM, in the chinchilla middle ear under the conditions tested. In contrast, expression of cSPLUNC1 was essential for maintenance of middle ear pressure and efficient mucociliary clearance, key defense mechanisms of the tubotympanum. Collectively, our data have provided the first in vivo evidence that cSPLUNC1 functions to maintain homeostasis of the upper airway and, thereby, is critical for protection of the middle ear

    The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation

    Get PDF
    Respiratory syncytial virus (RSV) is an important cause of acute respiratory disease in infants, immunocompromised subjects and the elderly. However, it is unclear why most primary RSV infections are associated with relatively mild symptoms, whereas some result in severe lower respiratory tract infections and bronchiolitis. Since RSV hospitalization has been associated with respiratory bacterial co-infections, we have tested if bacterial Toll-like receptor (TLR) agonists influence RSVA2- GFP infection in human primary cells or cell lines. The synthetic bacterial lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4), the prototype ligand for the heterodimeric TLR1/TLR2 complex, enhanced RSV infection in primary epithelial, myeloid and lymphoid cells. Surprisingly, enhancement was optimal when lipopeptides and virus were added simultaneously, whereas addition of Pam3CSK4 immediately after infection had no effect. We have identified two structurally related lipopeptides without TLR-signaling capacity that also modulate RSV infection, whereas Pam3CSK4-reminiscent TLR1/2 agonists did not, and conclude that modulation of infection is independent of TLR activation. A similar TLR-independent enhancement of infection could also be demonstrated for wild-type RSV strains, and for HIV-1, measles virus and human metapneumovirus. We show that the effect of Pam3CSK4 is primarily mediated by enhanced binding of RSV to its target cells. The Npalmitoylated cystein

    Panel 4 : Report of the Microbiology Panel

    Get PDF
    Objective. To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources. PubMed database of the National Library of Medicine. Review Methods. Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions. Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice. (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.Peer reviewe

    An innate defense peptide BPIFA1/SPLUNC1 restricts influenza A virus infection

    Get PDF
    The airway epithelium secretes proteins that function in innate defense against infection. BPI fold-containing family member A1 (BPIFA1) is secreted into airways and has a protective role during bacterial infections, but it is not known whether it also has an antiviral role. To determine a role in host defense against influenza A virus (IAV) infection and to find the underlying defense mechanism we developed transgenic mouse models that are deficient in BPIFA1 and used these, in combination with in vitro 3D mouse tracheal epithelial cell (mTEC) cultures, to investigate its antiviral properties. We show that BPIFA1 has a significant role in mucosal defense against IAV infection. BPIFA1 secretion was highly modulated after IAV infection. Mice deficient in BPIFA1 lost more weight after infection, supported a higher viral load and virus reached the peripheral lung earlier, indicative of a defect in the control of infection. Further analysis using mTEC cultures showed that BPIFA1-deficient cells bound more virus particles, displayed increased nuclear import of IAV ribonucleoprotein complexes and supported higher levels of viral replication. Our results identify a critical role for BPIFA1 in the initial phase of infection by inhibiting the binding and entry of IAV into airway epithelial cells

    Cloning and Sequencing of a Genomic Island Found in the Brazilian Purpuric Fever Clone of Haemophilus influenzae Biogroup Aegyptius

    No full text
    A genomic island was identified in the Haemophilus influenzae biogroup aegyptius Brazilian purpuric fever (BPF) strain F3031. This island, which was also found in other BPF isolates, could not be detected in non-BPF biogroup aegyptius strains or in nontypeable or typeable H. influenzae strains, with the exception of a region present in the type b Eagan strain. This 34,378-bp island is inserted, in reference to H. influenzae Rd KW20, within a choline transport gene and contains a mosaic structure of Mu-like prophage genes, several hypothetical genes, and genes potentially encoding an Erwinia carotovora carotovoricin Er-like bacteriocin. The product of the tail fiber ORF in the bacteriocin-like region shows a hybrid structure where the C terminus is similar to an H. influenzae phage HP1 tail protein implicating this open reading frame in altering host specificity for a putative bacteriocin. Significant synteny is seen in the entire genomic island with genomic regions from Salmonella enterica subsp. enterica serovar Typhi CT18, Photorhabdus luminescens subsp. laumondii TT01, Chromobacterium violaceum, and to a lesser extent Haemophilus ducreyi 35000HP. In a previous work, we isolated several BPF-specific DNA fragments through a genome subtraction procedure, and we have found that a majority of these fragments map to this locus. In addition, several subtracted fragments generated from an independent laboratory by using different but related strains also map to this island. These findings underscore the importance of this BPF-specific chromosomal region in explaining some of the genomic differences between highly invasive BPF strains and non-BPF isolates of biogroup aegyptius

    Genetic and Functional Analyses of the Actinobacillus actinomycetemcomitans AfeABCD Siderophore-Independent Iron Acquisition System

    No full text
    The Actinobacillus actinomycetemcomitans afeABCD iron transport system, the expression of which is controlled by iron and Fur, was identified in three different isolates. The protein products of this locus are related to bacterial ABC transporters involved in metal transport. Transformation of the Escherichia coli 1017 iron acquisition mutant with a plasmid harboring afeABCD promoted cell growth under iron-chelated conditions. However, insertion disruption of each of the afeABCD coding regions abolished this growth-relieving effect. The replacement of the parental afeA allele with the derivative afeA::EZ::TN<KAN-2> drastically reduced the ability of A. actinomycetemcomitans cells to grow under iron-chelated conditions

    Automated Underway Oceanic and Atmospheric Measurements from Ships

    No full text
    Merchant, cruise, and research vessels make unique contributions to marine data collection using automated oceanic and atmospheric monitoring systems. The programs making these observations are reviewed along with the wide range of applications to atmospheric and oceanic research and operations. A vision for the next decade outlines where incremental improvements to instruments, platforms, and data stewardship can benefit the community. A series of recommendations are made to meet the challenges of future-ocean observing
    corecore