4,631 research outputs found

    Electron-phonon coupling and phonon self-energy in MgB2_2: do we really understand MgB2_2 Raman spectra ?

    Full text link
    We consider a model Hamiltonian fitted on the ab-initio band structure to describe the electron-phonon coupling between the electronic σ−\sigma-bands and the phonon E2g_{2g} mode in MgB2_2. The model allows for analytical calculations and numerical treatments using very large k-point grids. We calculate the phonon self-energy of the E2g_{2g} mode along two high symmetry directions in the Brillouin zone. We demonstrate that the contribution of the σ\sigma bands to the Raman linewidth of the E2g_{2g} mode via the electron-phonon coupling is zero. As a consequence the large resonance seen in Raman experiments cannot be interpreted as originated from the E2gE_{2g} mode at Γ\Gamma. We examine in details the effects of Fermi surface singularities in the phonon spectrum and linewidth and we determine the magnitude of finite temperature effects in the the phonon self-energy. From our findings we suggest several possible effects which might be responsible for the MgB2_2 Raman spectra.Comment: 10 pages, 9 figure

    Total energy global optimizations using non orthogonal localized orbitals

    Full text link
    An energy functional for orbital based O(N)O(N) calculations is proposed, which depends on a number of non orthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground state energy, without being trapped at local minima. The present approach overcomes the multiple minima problem present within the original formulation of orbital based O(N)O(N) methods; it therefore makes it possible to perform O(N)O(N) calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wavefunctions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground state energy, and the energy conservation during a molecular dynamics run. Several numerical examples for surfaces, bulk systems and clusters are presented and discussed.Comment: 24 pages, RevTex file, 5 figures available upon reques

    A First Principles Theory of Nuclear Magnetic Resonance J-Coupling in solid-state systems

    Full text link
    A method to calculate NMR J-coupling constants from first principles in extended systems is presented. It is based on density functional theory and is formulated within a planewave-pseudopotential framework. The all-electron properties are recovered using the projector augmented wave approach. The method is validated by comparison with existing quantum chemical calculations of solution-state systems and with experimental data. The approach has been applied to verify measured J-coupling in a silicophosphate structure, Si5O(PO4)6Comment: 9 page

    Simple mechanism for a positive exchange bias

    Full text link
    We argue that the interface coupling, responsible for the positive exchange bias (HE) observed in ferromagnetic/compensated antiferromagnetic (FM/AF) bilayers, favors an antiferromagnetic alignment. At low cooling field this coupling polarizes the AF spins close to the interface, which spin configuration persists after the sample is cooled below the Neel temperature. This pins the FM spins as in Bean's model and gives rise to a negative HE. When the cooling field increases, it eventually dominates and polarizes the AF spins in an opposite direction to the low field one. This results in a positive HE. The size of HE and the crossover cooling field are estimated. We explain why HE is mostly positive for an AF single crystal, and discuss the role of interface roughness on the magnitude of HE, and the quantum aspect of the interface coupling.Comment: 10 pages, 2 figures, to be published on May 1 issue of PR

    First-principle study of excitonic self-trapping in diamond

    Full text link
    We present a first-principles study of excitonic self-trapping in diamond. Our calculation provides evidence for self-trapping of the 1s core exciton and gives a coherent interpretation of recent experimental X-ray absorption and emission data. Self-trapping does not occur in the case of a single valence exciton. We predict, however, that self-trapping should occur in the case of a valence biexciton. This process is accompanied by a large local relaxation of the lattice which could be observed experimentally.Comment: 12 pages, RevTex file, 3 Postscript figure

    Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia

    Full text link
    We determine, by means of density functional theory, the stability and the structure of graphene nanoribbon (GNR) edges in presence of molecules such as oxygen, water, ammonia, and carbon dioxide. As in the case of hydrogen-terminated nanoribbons, we find that the most stable armchair and zigzag configurations are characterized by a non-metallic/non-magnetic nature, and are compatible with Clar's sextet rules, well known in organic chemistry. In particular, we predict that, at thermodynamic equilibrium, neutral GNRs in oxygen-rich atmosphere should preferentially be along the armchair direction, while water-saturated GNRs should present zigzag edges. Our results promise to be particularly useful to GNRs synthesis, since the most recent and advanced experimental routes are most effective in water and/or ammonia-containing solutions.Comment: accepted for publication in PR

    Structure, Stability, Edge States and Aromaticity of Graphene Ribbons

    Full text link
    We determine the stability, the geometry, the electronic and magnetic structure of hydrogen-terminated graphene-nanoribbons edges as a function of the hydrogen content of the environment by means of density functional theory. Antiferromagnetic zigzag ribbons are stable only at extremely-low ultra-vacuum pressures. Under more standard conditions, the most stable structures are the mono- and di-hydrogenated armchair edges and a zigzag edge reconstruction with one di- and two mono-hydrogenated sites. At high hydrogen-concentration ``bulk'' graphene is not stable and spontaneously breaks to form ribbons, in analogy to the spontaneous breaking of graphene into small-width nanoribbons observed experimentally in solution. The stability and the existence of exotic edge electronic-states and/or magnetism is rationalized in terms of simple concepts from organic chemistry (Clar's rule)Comment: 4 pages, 3 figures, accepted for publication by Physical Review Letter

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.

    Ab Initio Molecular Dynamics on the Electronic Boltzmann Equilibrium Distribution

    Get PDF
    We prove that for a combined system of classical and quantum particles, it is possible to write a dynamics for the classical particles that incorporates in a natural way the Boltzmann equilibrium population for the quantum subsystem. In addition, these molecular dynamics do not need to assume that the electrons immediately follow the nuclear motion (in contrast to any adiabatic approach), and do not present problems in the presence of crossing points between different potential energy surfaces (conical intersections or spin-crossings). A practical application of this molecular dynamics to study the effect of temperature in molecular systems presenting (nearly) degenerate states - such as the avoided crossing in the ring-closure process of ozone - is presented.Comment: published in New J. Phy

    High-order density-matrix perturbation theory

    Full text link
    We present a simple formalism for the calculation of the derivatives of the electronic density matrix at any order, within density functional theory. Our approach, contrary to previous ones, is not based on the perturbative expansion of the Kohn-Sham wavefunctions. It has the following advantages: (i) it allows a simple derivation for the expression for the high order derivatives of the density matrix; (ii) in extended insulators, the treatment of uniform-electric-field perturbations and of the polarization derivatives is straightforward.Comment: 4 page
    • …
    corecore