1,211 research outputs found

    Equivariant pretheories and invariants of torsors

    Full text link
    In the present paper we introduce and study the notion of an equivariant pretheory: basic examples include equivariant Chow groups, equivariant K-theory and equivariant algebraic cobordism. To extend this set of examples we define an equivariant (co)homology theory with coefficients in a Rost cycle module and provide a version of Merkurjev's (equivariant K-theory) spectral sequence for such a theory. As an application we generalize the theorem of Karpenko-Merkurjev on G-torsors and rational cycles; to every G-torsor E and a G-equivariant pretheory we associate a graded ring which serves as an invariant of E. In the case of Chow groups this ring encodes the information concerning the motivic J-invariant of E and in the case of Grothendieck's K_0 -- indexes of the respective Tits algebras.Comment: 23 pages; this is an essentially extended version of the previous preprint: the construction of an equivariant cycle (co)homology and the spectral sequence (generalizing the long exact localization sequence) are adde

    Extrasolar Giant Planets under Strong Stellar Irradiation

    Get PDF
    We investigate the effects on extrasolar giant planets [EGPs] of intense irradiation by their parent stars, describing the issues involved in treating the model atmosphere problem correctly. We treat the radiative transfer in detail, allowing the flux from the parent star to interact with all relevant depths of the planetary atmosphere, with no need for a pre-assumed albedo. We present a low-resolution optical and near-IR spectrum of a close-in EGP, focusing on the differences from an isolated planet. In our dust-free planetary atmospheres we find that Rayleigh scattering increases the EGP's flux by orders of magnitude shortward of the CaII H&K doublet (393 nm), and the spectral features of the parent star are exactly reflected. In the optical and near-IR the thermal absorption of the planet takes over, but the absorption features are changed by the irradiation. The inclusion of dust increases the reflected flux in the blue; the stellar spectral lines can be seen blueward of H-beta (486 nm).Comment: 14 pages, 4 figures, LaTex, accepted in ApJ

    Human Amniocytes Are Receptive to Chemically Induced Reprogramming to Pluripotency

    Get PDF
    Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_ AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/ AKT/ mTOR (mammalian target of rapamycin) pathway or GSK3 beta inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells

    Inverse Eigenvalue Problems for Perturbed Spherical Schroedinger Operators

    Full text link
    We investigate the eigenvalues of perturbed spherical Schr\"odinger operators under the assumption that the perturbation q(x)q(x) satisfies xq(x)L1(0,1)x q(x) \in L^1(0,1). We show that the square roots of eigenvalues are given by the square roots of the unperturbed eigenvalues up to an decaying error depending on the behavior of q(x)q(x) near x=0x=0. Furthermore, we provide sets of spectral data which uniquely determine q(x)q(x).Comment: 14 page

    Morphology of two dimensional fracture surface

    Full text link
    We consider the morphology of two dimensional cracks observed in experimental results obtained from paper samples and compare these results with the numerical simulations of the random fuse model (RFM). We demonstrate that the data obey multiscaling at small scales but cross over to self-affine scaling at larger scales. Next, we show that the roughness exponent of the random fuse model is recovered by a simpler model that produces a connected crack, while a directed crack yields a different result, close to a random walk. We discuss the multiscaling behavior of all these models.Comment: slightly revise

    The formation of Uranus and Neptune among Jupiter and Saturn

    Get PDF
    The outer giant planets, Uranus and Neptune, pose a challenge to theories of planet formation. They exist in a region of the Solar System where long dynamical timescales and a low primordial density of material would have conspired to make the formation of such large bodies (\sim 15 and 17 times as massive as the Earth, respectively) very difficult. Previously, we proposed a model which addresses this problem: Instead of forming in the trans-Saturnian region, Uranus and Neptune underwent most of their growth among proto-Jupiter and -Saturn, were scattered outward when Jupiter acquired its massive gas envelope, and subsequently evolved toward their present orbits. We present the results of additional numerical simulations, which further demonstrate that the model readily produces analogues to our Solar System for a wide range of initial conditions. We also find that this mechanism may partly account for the high orbital inclinations observed in the Kuiper belt.Comment: Submitted to AJ; 38 pages, 16 figure

    Emission spectra and intrinsic optical bistability in a two-level medium

    Full text link
    Scattering of resonant radiation in a dense two-level medium is studied theoretically with account for local field effects and renormalization of the resonance frequency. Intrinsic optical bistability is viewed as switching between different spectral patterns of fluorescent light controlled by the incident field strength. Response spectra are calculated analytically for the entire hysteresis loop of atomic excitation. The equations to describe the non-linear interaction of an atomic ensemble with light are derived from the Bogolubov-Born-Green-Kirkwood-Yvon hierarchy for reduced single particle density matrices of atoms and quantized field modes and their correlation operators. The spectral power of scattered light with separated coherent and incoherent constituents is obtained straightforwardly within the hierarchy. The formula obtained for emission spectra can be used to distinguish between possible mechanisms suggested to produce intrinsic bistability.Comment: 18 pages, 5 figure

    Host-driven subspeciation in the hedgehog fungus, Trichophyton erinacei, an emerging cause of human dermatophytosis

    Get PDF
    Altres ajuts: Czech Ministry of Health (grant NU21-05-00681)Trichophyton erinacei is a main cause of dermatophytosis in hedgehogs and is increasingly reported from human infections worldwide. This pathogen was originally described in the European hedgehog (Erinaceus europaeus) but is also frequently found in the African four-toed hedgehog (Atelerix albiventris), a popular pet animal worldwide. Little is known about the taxonomy and population genetics of this pathogen despite its increasing importance in clinical practice. Notably, whether there are different populations or even cryptic species associated with different hosts or geographic regions is not known. To answer these questions, we collected 161 isolates, performed phylogenetic and population-genetic analyses, determined mating-type, and characterised morphology and physiology. Multigene phylogeny and microsatellite analysis supported T. erinacei as a monophyletic species, in contrast to highly incongruent single-gene phylogenies. Two main subpopulations, one specific mainly to Atelerix and second to Erinaceus hosts, were identified inside T. erinacei, and slight differences in the size of microconidia and antifungal susceptibilities were observed among them. Although the process of speciation into two lineages is ongoing in T. erinacei, there is still gene flow between these populations. Thus, we present T. erinacei as a single species, with notable intraspecies variability in genotype and phenotype. The data from wild hedgehogs indicated that sexual reproduction in T. erinacei and de novo infection of hedgehogs from soil are probably rare events and that clonal horizontal spread strongly dominates. The molecular typing approach used in this study represents a suitable tool for further epidemiological surveillance of this emerging pathogen in both animals and humans. The results of this study also highlighted the need to use a multigene phylogeny ideally in combination with other inde-pendent molecular markers to understand the species boundaries of dermatophytes

    A High Braking Index for a Pulsar

    Get PDF
    We present a phase-coherent timing solution for PSR J1640–4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR J1640–4631 to be n = 3.15 ± 0.03. Using a series of simulations, we argue that this unusually high braking index is not due to timing noise, but is intrinsic to the pulsar's spin-down. We cannot, however, rule out contamination due to an unseen glitch recovery, although the recovery timescale would have to be longer than most yet observed. If this braking index is eventually proven to be stable, it demonstrates that pulsar braking indices greater than three are allowed in nature; hence, other physical mechanisms such as mass or magnetic quadrupoles are important in pulsar spin-down. We also present a 3σ upper limit on the pulsed flux at 1.4 GHz of 0.018 mJy

    Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators

    No full text
    International audienceWe report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation. © 2011 American Physical Society
    corecore