5,978 research outputs found

    Fermions in 3D Optical Lattices: Cooling Protocol to Obtain Antiferromagnetism

    Full text link
    A major challenge in realizing antiferromagnetic (AF) and superfluid phases in optical lattices is the ability to cool fermions. We determine the equation of state for the 3D repulsive Fermi-Hubbard model as a function of the chemical potential, temperature and repulsion using unbiased determinantal quantum Monte Carlo methods, and we then use the local density approximation to model a harmonic trap. We show that increasing repulsion leads to cooling, but only in a trap, due to the redistribution of entropy from the center to the metallic wings. Thus, even when the average entropy per particle is larger than that required for antiferromagnetism in the homogeneous system, the trap enables the formation of an AF Mott phase.Comment: 4 pages; 5 figures; also see supplementary material in 2 pages with 1 figur

    Vlasov Description Of Dense Quark Matter

    Get PDF
    We discuss properties of quark matter at finite baryon densities and zero temperature in a Vlasov approach. We use a screened interquark Richardson's potential consistent with the indications of Lattice QCD calculations. We analyze the choices of the quark masses and the parameters entering the potential which reproduce the binding energy (B.E.) of infinite nuclear matter. There is a transition from nuclear to quark matter at densities 5 times above normal nuclear matter density. The transition could be revealed from the determination of the position of the shifted meson masses in dense baryonic matter. A scaling form of the meson masses in dense matter is given.Comment: 15 pages 4 figure

    Bioaccessibility of Carotenoids and Tocopherols in Marine Microalgae, Nannochloropsis sp. and Chaetoceros sp.

    Get PDF
    Microalgae can produce various natural products such as pigments, enzymes, unique fatty acids and vitamin that benefit humans. The objective of the study is to study the bioaccessibility of carotenoids (β-carotene and lycopene) and vitamin E (α- and β- tocopherol) of Nannochloropsis oculata and Chaetoceros calcitrans. Analyses were carried out for both the powdered forms of N. oculata and C. calcitrans, and the dried extract forms of N. oculata and C. calcitrans. In vitro digestion method together with RP-HPLC was used to determine the bioaccessibility of carotenoids and vitamin E for both forms of microalgae. Powdered form of N. oculata had the highest bioaccessibility of β-carotene (28.0 ± 0.6 g kg-1), followed by dried extract N. oculata (21.5 ± 1.1 g kg-1), dried extract C. calcitrans (16.9 ± 0.1 g kg-1), and powdered C. calcitrans (15.6 ± 0.1 g kg-1). For lycopene, dried extract of N. oculata had the highest bioaccessibility of lycopene (42.6 ± 1.1 g kg- 1), followed by dried extract C. calcitrans (41.9 ± 0.6 g kg-1), powdered C. calcitrans (39.7 ± 0.1 g kg-1) and powdered N. oculata (32.6 ± 0.7 g kg-1). Dried extract C. calcitrans had the highest bioaccessibility of α-tocopherol (72.1 ± 1.2 g kg-1). However, β-tocopherol was not detected in both dried extract and powdered form of C. calcitrans. In conclusion, all samples in their dried extract forms were found to have significantly higher bioaccessibilities than their powdered forms. This may be due to the disruption of the food matrix contributing to a higher bioaccessibility of nutrients shown by the dried extract form

    Optical conductivity of a granular metal at not very low temperatures

    Full text link
    We study the finite-temperature optical conductivity, sigma(omega,T), of a granular metal using a simple model consisting of a array of spherical metallic grains. It is necessary to include quantum tunneling and Coulomb blockade effects to obtain the correct temperature dependence of sigma(omega, T), and to consider polarization oscillations to obtain the correct frequency dependence. We have therefore generalized the Ambegaokar-Eckern-Schoen (AES) model for granular metals to obtain an effective field theory incorporating the polarization fluctuations of the individual metallic grains. In contrast to the DC conductivity, which is determined by inter-grain charge transfer and obeys an Arrhenius law at low temperature, the AC conductivity is dominated by a resonance peak for intra-grain polarization oscillations, which has a power-law tail at low frequencies. More importantly, although the resonance frequency agrees with the classical prediction, the resonance width depends on intergrain quantum tunneling and Coulomb blockade parameters, in addition to the classical Drude relaxation within the grain. This additional damping is due to inelastic cotunneling of polarization fluctuations to neighbouring grains and it qualitatively differs from the DC conductivity in its temperature dependence quite unlike the expectation from Drude theory.Comment: Added figures, published version, 16 pages, REVTe

    Mystery of Excess Low Energy States in a Disordered Superconductor in a Zeeman Field

    Get PDF
    Tunneling density of states measurements of disordered superconducting (SC) Al films in high Zeeman fields reveal a significant population of subgap states which cannot be explained by standard BCS theory. We provide a natural explanation of these excess states in terms of a novel disordered Larkin-Ovchinnikov (dLO) phase that occurs near the spin-paramagnetic transition at the Chandrasekhar-Clogston critical field. The dLO superconductor is characterized by a pairing amplitude that changes sign at domain walls. These domain walls carry magnetization and support Andreev bound states, which lead to distinct spectral signatures at low energy.Comment: 5 pages, 4 figures, plus supplementary section describing methods (2 pages

    500 TeV gamma rays from Hercules X-1

    Get PDF
    A signal (chance probability = .0002) with the 1.24 s period of Hercules X-1 has been observed using the Utah Fly's Eye. The signal's relatively long period and high shower energy conflict with some popular models of particle acceleration by pulsars. Optical and X-ray data suggest a picture in which energetic particles produce multi-TeV gamma rays by collisions with Hercules X-1's accretion disk

    Limits on deeply penetrating particles in the 10(17) eV cosmic ray flux

    Get PDF
    Deeply penetrating particles in the 10 to the 17th power eV cosmic ray flux were investigated. No such events were found in 8.2 x 10 to the 6th power sec of running time. Limits were set on the following: quark-matter in the primary cosmic ray flux; long-lived, weakly interacting particles produced in p-air collisions; the astrophysical neutrino flux. In particular, the neutrino flux limit at 10 to the 17th power eV implies that z, the red shift of maximum activity is 10 in the model of Hill and Schramm

    All sky Northern Hemisphere 10(15) EV gamma-ray survey

    Get PDF
    Flux limits in the range 10 to the minus 13th power-10 to the minus 12 power/sq cm/s have been obtained by observing Cerenkov flashes from small air showers. During 1983, a 3.5 sigma excess of showers was observed during the phase interval 0.2 to 0.3 of the 4.8h period of Cygnus X-3, but no excess was found in 1984 observations
    corecore