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ABSTRACT

A signal (chance probability : 2 x 10-4) with the 1.24 s
period of Hercules X-1 has been observed using the Utah
ny's Eye. The signal's relatively long period and high
shower energy conflict with some popular models of
particle acceleration by pulsars. Optical and X-ray
data suggest a picture in which energetic particles
produce multi-TeV y-rays by collisions with Hercules
X-l's accretion disk.

1. Introduction. A detection of TeV y-ray emission by Hercules X-1
has been reported by Dowthwaite et al. (1984). We have studied the
same object at much higher energies by detecting Cerenkov flashes from
atmospheric air showers. The use of the _y's Eye to search for ultra-
high energy y-rays has been described elsewhere (Boone et al. 1984).
The 67 mirror units and 880 photomultipliertubes of _y's Eye I recor-
ded Cerenkov flashes which triggered 6 or more tubes. This selected
showers with energies above about 200 TeV, with mean energies near 500
TeV. The angular resolution radius is about 3.5°, therefore a 7°
square target region was used centered on the direction of Hercules X-I.

2. Observations and Data Analysis. The only nights for which
Hercules X-1 was visible and the detector was recording Cerenkov data
were July 10-14, 1983 (UT). Expected rates within the target region
(if y-ray emission were absent) were found by observing rates in
regions outside the target region in the same declination strip. The
total number of showers recorded in the target region was 301, with an
expected number of 271.9. This amounts to a 1.8_ excess. A more
significant result is obtained by a test for periodicity in the data.
Because Dowthwaite et al. (1984) observed very sporadic emission from
Hercules X-l, the data frownthe 5 nights were analyzed separately.
The shower arrival times were corrected for the motion of the X-ray
source in its binary system and adjusted to the solar system barycenter
using results from Deeter, Boynton, and Pravdo (1981). The pulse
period was obtained from 1983 May X-ray satellite results by extra-
polation, using the period and period derivative given by Nagase et al.
(1984). The period used to fold the data was 1.2377872 s. Although
the X-ray data obtained a period, an absolute phase determination was
not possible. Our choice of phase is arbitrary.

A x2 test was applied to the distribution of phases within the
~1.24 s period, or light curve. Using 10 phase bins the data were
compared to a constant background prediction. To remove effects of
arbitrary bin boundaries, four X2 values were obtained for each data
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set by uniform shifts of the phase bin boundaries. Then the
maximum x2 was selected. This procedure prevented a narrow signal
from being split between adjacent bins and thereby diminishing its
apparent significance. Of the 5 nights, only 1983 July ii had a
statistically significant ×2. Next, the data from that night were
divided into two equal parts and it was observed that the signal was
present only in the data taken in the earlier part of the night. The
light curve for this case is shown in Figure 1. An excess is present
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shows the X2 as a function of the period. The x2 is quite specific in
preferring a period near that of Nagase et al. (1984). Since the
signal was received during a relatively short 40 minute interval, the
period measurement is crude compared with other experiments. The
barycentric time at the center of this time interval was JD 2445526,719.
This corresponds to orbital phase 0.66 (Deeter, Boynton, and Pravdo
1981) and 0.63 in the 35 day period (Delgado, Schmidt, and Thomas
1983). The orbital phase is such that the companion star, HZ Herculis,
was not near the line of sight to the pulsar. It was therefore not
positioned so that the edge of its atmosphere could serve as a target
or converter to produce high energy y-rays from energetic protons.

The approximate y-ray flux was estimated using the signal shown
in Figure 1. The resulting flux is 3.3±1.1 x 10"12cm-2s'1. This is
the (apparently sporadic) flux observed in the first part of the 1983
July 11 data. It is the average flux within the 1.24 s period. The
uncertainties given above are statistical, only. Using a distance of
5 kpc for Hercules X-I and assuming the y-rays are emitted isotropi-
cally, the peak observed luminosity above 5 x 1014 eV is about
103? erg s-l. This value is close to the total luminosity estimated
for the system (Bradt et al. 1979).

4. Discussion. The charged particles which produced these y-rays
must have energies above 10I_ eV. Given the relatively long rotational
period (1.24 s) of Hercules X-I, this energy exceeds the maximum
expected from Hercules X-1 according to certain accelerationmodels.
The magnetic field in the vicinity of the pulsar surface is
3-5 x 1012 Gauss (Trumper et al. 1978). According to the models of
Goldreich and and Julian (1969), and Cheng and Ruderman (1977), the
maximum energy of produced particles would be about 2-3 x 10IB eV.
If we assume the model of Gunn and Ostriker (1969) and allow particles
to be accelerated from the speed of light cylinder radius out to the
companion star, the maximum energy is near 1013 eV. Some models,
however, do predict sufficiently high energies from this system (Kundt
1983, Chanmugam and Brecher 1984).

Optical (Delgado, Schmidt, and Thomas 1983) and X-ray (Parmar et
al. 1985) data from Hercules X-1 were taken during the time interval
of our observations. Hercules X-I displays a 35 day cycle of X-ray
intensity variations in addition to the 1.24 s pulsar period and the
1.7 day orbital period. High emission normally occurs during about 10
days of the cycle. During 1983 June to August, however, Hercules X-I
remained at levels _ 5% of the normal peak intensities. This might
suggest that X-ray production did not occur during this time. This
conclusion is not supported by optical observationsmade in 1983 June
and August. These show the normal (~1.5 mag) variation of the
optical emission in the 1.7 day orbital cycle. This variation is
attributed to extra emission due to X-ray heating of the side of the
companion star which faces the X-ray source. The optical variability
implies that X-rays were being produced during this interval. The
conclusion of Parmar et al. and Delgado, Schmidt, and Thomas was that

the accretion disk may have thickened and blocked the line of sight to
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the earth for X-rays originating near the neutron star.

If energetic protons are produced near the neutron star, then
the occulting material mentioned above may have served as target
material for the generation of ultra-high energy _° mesons which
decayed to produce the energetic y-rays. The resulting y-rays are
essentially parallel with the parent protons. The y-rays could be
produced reasonably efficiently by column thicknesses of 5-200 g/cm-2,
which would absorb keV X-rays very effectively. Such a model may be
rejected in the future if ultra-high energy y-rays are detected
simultaneously with X-rays. If the model is correct the y-ray emission
by Hercules X-1 may occur only during unusual conditions.

Although the signal reported by Dowthwaite et al. (1984) was at
much lower energy and was not simultaneouswith our signal, our result
is supportive of their conclusion that TeV y-rays are produced by
Hercules X-I.
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