1,250 research outputs found

    Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

    Get PDF
    Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from today's simple prototypes to full-fledged systems

    Multitask Learning on Graph Neural Networks: Learning Multiple Graph Centrality Measures with a Unified Network

    Full text link
    The application of deep learning to symbolic domains remains an active research endeavour. Graph neural networks (GNN), consisting of trained neural modules which can be arranged in different topologies at run time, are sound alternatives to tackle relational problems which lend themselves to graph representations. In this paper, we show that GNNs are capable of multitask learning, which can be naturally enforced by training the model to refine a single set of multidimensional embeddings ∈Rd\in \mathbb{R}^d and decode them into multiple outputs by connecting MLPs at the end of the pipeline. We demonstrate the multitask learning capability of the model in the relevant relational problem of estimating network centrality measures, focusing primarily on producing rankings based on these measures, i.e. is vertex v1v_1 more central than vertex v2v_2 given centrality cc?. We then show that a GNN can be trained to develop a \emph{lingua franca} of vertex embeddings from which all relevant information about any of the trained centrality measures can be decoded. The proposed model achieves 89%89\% accuracy on a test dataset of random instances with up to 128 vertices and is shown to generalise to larger problem sizes. The model is also shown to obtain reasonable accuracy on a dataset of real world instances with up to 4k vertices, vastly surpassing the sizes of the largest instances with which the model was trained (n=128n=128). Finally, we believe that our contributions attest to the potential of GNNs in symbolic domains in general and in relational learning in particular.Comment: Published at ICANN2019. 10 pages, 3 Figure

    The Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon

    Full text link
    The Gerasimov-Drell-Hearn sum rule is one of several dispersive sum rules that connect the Compton scattering amplitudes to the inclusive photoproduction cross sections of the target under investigation. Being based on such universal principles as causality, unitarity, and gauge invariance, these sum rules provide a unique testing ground to study the internal degrees of freedom that hold the system together. The present article reviews these sum rules for the spin-dependent cross sections of the nucleon by presenting an overview of recent experiments and theoretical approaches. The generalization from real to virtual photons provides a microscope of variable resolution: At small virtuality of the photon, the data sample information about the long range phenomena, which are described by effective degrees of freedom (Goldstone bosons and collective resonances), whereas the primary degrees of freedom (quarks and gluons) become visible at the larger virtualities. Through a rich body of new data and several theoretical developments, a unified picture of virtual Compton scattering emerges, which ranges from coherent to incoherent processes, and from the generalized spin polarizabilities on the low-energy side to higher twist effects in deep inelastic lepton scattering.Comment: 32 pages, 19 figures, review articl

    Comparison of Bacterial Diversity within the Coral Reef Sponge, Axinella corrugata, and the Encrusting Coral Erythropodium caribaeorum

    Get PDF
    We compared the Caribbean reef sponge, Axinella corrugata, with the Caribbean reef coral, Erythropodium caribaeorum for differences in their resident microbial communities. This cursory survey of bacterial diversity applied 16S rRNA gene sequences. Over 100 culture-independent sequences were generated from five different Axinella 16S rRNA libraries, and compared with 69 cultured isolates. The cultureindependent 16S rDNA clones displayed a higher diversity of Proteobacteria, including “uncultured” or “unknown” representatives from the Deltaproteobacteria. Arcobacterium, and Cyanobacteria were also found. We have also confirmed that Axinella sponges appeared to host specific microbial symbionts, similar to the previously identified clones termed “OSO” environmental samples. In contrast, seawater samples near Axinella were dominated by Pseudoalteromonas. Adjacent sediment samples yielded clones of Planctomycetacea, Proteobacteria, sulfate-reducing Desulfovibrio spp, and other Deltaproteobacteria. Anaerobe-like 16S rRNA sequences were detected after the oxygen supply to one Axinella sample was deliberately curtailed to assess temporal changes in the microbial community. E. caribaeorum yielded more Betaproteobacteria relative to Axinella 16S libraries, and also included the Gammaproteobacteria genus Spongiobacter. However, Axinella-derived microbes appeared phylogenetically deeper with greater sequence divergences than the coral. Overall this study indicated that marine microbial community diversity can be linked to specific source hosts and habitats

    PHOTOCHEMICAL RING-OPENING IN meso-CHLORINATED CHLOROPHYLLS

    Get PDF
    Irradiation of 20-chloro-chlorophylls of the a-type with visible light produces long-wavelength shifted photoproducts, which transform in the dark to linear tetrapyrroles (bile pigments). The possible significance for chlorophyll degradation is discussed

    Deuteron photodisintegration cross-sections 50-155 MeV

    Get PDF
    The study of the photodisintegration of the deuteron should be a rewarding area over the next few years both as a result of the increased sophistication of recent theoretical treatments and also because of the potential, which has only just begun to be realised, of much more accurate and reliable photoreaction data

    Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c

    Full text link
    Spin transfer observables for the strangeness-production reaction Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185 collaboration using a transversely-polarized frozen-spin target with an antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at CERN. This measurement investigates observables for which current models of the reaction near threshold make significantly differing predictions. Those models are in good agreement with existing measurements performed with unpolarized particles in the initial state. Theoretical attention has focused on the fact that these models produce conflicting predictions for the spin-transfer observables D_{nn} and K_{nn}, which are measurable only with polarized target or beam. Results presented here for D_{nn} and K_{nn} are found to be in disagreement with predictions from existing models. These results also underscore the importance of singlet-state production at backward angles, while current models predict complete or near-complete triplet-state dominance.Comment: 5 pages, 3 figure

    Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties

    Full text link
    Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 Ό\mum range and slits widths spanning continuously the 50--1250nm range. The metric scaling predicted by de Gennes' blob model is shown to hold for both linear and circularised DNA up to the strongest levels of confinement. More notably, the topological properties of the circularised DNA molecules have two major differences compared to three-dimensional confinement. First, the overall knotting probability is non-monotonic for increasing confinement and can be largely enhanced or suppressed compared to the bulk case by simply varying the slit width. Secondly, the knot population consists of knots that are far simpler than for three-dimensional confinement. The results suggest that nano-slits could be used in nano-fluidic setups to produce DNA rings having simple topologies (including the unknot) or to separate heterogeneous ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure

    Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c

    Get PDF
    The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton + \pi^+ + proton + \pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \Lambda/anti-\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24 pages, 16 figure

    Gas Gain Uniformity Tests performed on Multi Wire Proportional Chambers for the LHCb Muon System

    Get PDF
    We present the experimental setup and the results of the gas gain uniformity tests performed as part of the quality control of the multiwire proportional chambers produced at CERN for the LHCb Muon system. The test provides a relative gas gain measurement over the whole chamber sensitive area. It is based on the analysis of the pulse height spectrum obtained when the chamber is exposed to {a^241}Am radioactive source. Since the measurement is normalized to the peak of a precise pulse generator, the gain uniformity can also be evaluated among different gas gaps and different chambers
    • 

    corecore