87 research outputs found
Contribution of HEP electronics techniques to the medical imaging field
présenté par P.-E. Vert, proceedings sous forme de CD Imagerie Médical
Site Specific Knock-In Genome Editing in Human HSCs Using Baboon Envelope gp Pseudotypedviral Derived âNanobladesâ Loaded with Cas9/sgRNA Combined with Donor Encoding AAV-6
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. Here, we have designed ?Nanoblades?, a new technology that will deliver a genomic cleaving agent into cells. These are genetically modified Murine Leukemia Virus (MLV) or HIV derived virus like particle (VLP), in which the viral structural protein Gag has been fused to the Cas9. These VLPs are thus loaded with Cas9 protein together with the guide RNAs. Thus, nanoblades are devoid of any viral-derived genetic material. Highly efficient gene editing was obtained in cell lines, IPS cells and primary mouse and human cells (Mangeot et al. Nature Communication, 2019). However, their delivery into target cells can be technically challenging when working with primary immune cells. Now we showed that nanoblades were remarkably efficient for entry into human T, B and hematopoietic stem cells thanks to their surface co-pseudotyping with baboon retroviral and VSVG envelope glycoproteins. We were able to induce efficient, transient and very rapidlygenome-editing in human induced pluripotent stem cells reaching up to 70% in the empty spiracles homeobox 1 (EMX1) and muscular dystrophy (MD) gene locus. A brief nanoblade incubation of primary human T and B cells resulted in 40% and 20% editing of the Wiskott-Aldrich syndrome (WAS) gene locus, while hematopoietic stem cells treated for 18 h with nanoblades allowed 30-40% gene editing in the WAS gene locus and up to 80% for the Myd88 genomic target. Moreover, for the HIV- and MLV-derived nanoblades no cell toxicity and low to undetectable off-target effects were demonstrated.Finally, we also treated hHSCs with nanoblades in combination with an AAV-6 donor encoding vector resulting in over 20% of stable expression cassette knock-in into the WAS gene locus. Currently, we are evaluating these gene modified HSCs for their long-term reconstitution of NOD/SCIDgC-/- mice.Summarizing, this new technology is simple to implement in any laboratory, shows high flexibility for different targets including primary immune cells of murine and human origin, is relatively inexpensive and therefore have important prospects for basic and clinical translation in the area of gene therapy.Fil: Gutierrez, Alejandra. Inserm; FranciaFil: Abrey Recalde, Maria Jimena. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina. Inserm; FranciaFil: Mangeot, Philippe E.. Inserm; FranciaFil: Costa, Caroline. Inserm; FranciaFil: Bernandin, Ornellie. Inserm; FranciaFil: Fusil, Floriane. Inserm; FranciaFil: Froment, GisÚle. Inserm; FranciaFil: Martin, Francisco. Inserm; FranciaFil: Bellabdelah, Karim. Universidad de Granada; EspañaFil: Ricci, Emiliano P.. Inserm; FranciaFil: Ayuso, Eduard. Universite de Nantes; FranciaFil: Cosset, François loic. Inserm; FranciaFil: Verhoeyen, Els. Inserm; FranciaAmerican Society of Cell and Gene Therapy 22nd Annual MettingWashingtonEstados UnidosAmerican Society of Cell and Gene Therap
A FABRY-PEROT CAVITY FOR COMPTON POLARIMETRY
A new kind of Compton polarimeter using a resonant FabryâPe« rot cavity as a power buildup for the photon beam is proposed. A prototype of such a cavity is described, along with the results obtained in terms of source to be used in a Compton scattering polarimeter. ( 1998 Elsevier Science B.V. All rights reserved
Second Generation Leptoquark Search in p\bar{p} Collisions at = 1.8 TeV
We report on a search for second generation leptoquarks with the D\O\
detector at the Fermilab Tevatron collider at = 1.8 TeV.
This search is based on 12.7 pb of data. Second generation leptoquarks
are assumed to be produced in pairs and to decay into a muon and quark with
branching ratio or to neutrino and quark with branching ratio
. We obtain cross section times branching ratio limits as a function
of leptoquark mass and set a lower limit on the leptoquark mass of 111
GeV/c for and 89 GeV/c for at the 95%\
confidence level.Comment: 18 pages, FERMILAB-PUB-95/185-
Jet Production via Strongly-Interacting Color-Singlet Exchange in Collisions
A study of the particle multiplicity between jets with large rapidity
separation has been performed using the D{\O}detector at the Fermilab Tevatron
Collider operating at TeV. A significant excess of
low-multiplicity events is observed above the expectation for color-exchange
processes. The measured fractional excess is , which is consistent with a strongly-interacting
color-singlet (colorless) exchange process and cannot be explained by
electroweak exchange alone. A lower limit of 0.80% (95% C.L.) is obtained on
the fraction of dijet events with color-singlet exchange, independent of the
rapidity gap survival probability.Comment: 15 pages (REVTeX), 3 PS figs (uuencoded/tar compressed, epsf.sty)
Complete postscript available at http://d0sgi0.fnal.gov/d0pubs/journals.html
Submitted to Physical Review Letter
Are motor inhibition and cognitive flexibility dead ends in ADHD?
Contains fulltext :
53518.pdf (publisher's version ) (Closed access)Executive dysfunction has been postulated as the core deficit in ADHD, although many deficits in lower order cognitive processes have also been identified. By obtaining an appropriate baseline of lower order cognitive functioning light may be shed on as to whether executive deficits result from problems in lower order and/or higher order cognitive processes. We examined motor inhibition and cognitive flexibility in relation to a baseline measure in 816 children from ADHD and control families. Multiple children in a family were tested in order to examine the familiality of the measures. No evidence was found for deficits in motor inhibition or cognitive flexibility in children with ADHD or their nonaffected siblings: Compared to their baseline speed and accuracy of responding, children with ADHD and their (non)affected siblings were not disproportionally slower or inaccurate when demands for motor inhibition or cognitive flexibility were added to the task. However, children with ADHD and their (non)affected siblings were overall less accurate than controls, which could not be attributed to differences in response speed. This suggests that inaccuracy of responding is characteristic of children having (a familial risk for) ADHD. Motor inhibition and cognitive flexibility as operationalized with mean reaction time were found to be familial. It is concluded that poorer performance on executive tasks in children with ADHD and their (non)affected siblings may result from deficiencies in lower order cognitive processes and not (only) from higher order cognitive processes/executive functions
Memory-guided force output is associated with self-reported ADHD symptoms in young adults
Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed mental health disorder in childhood and persists into adulthood in up to 65 % of cases. ADHD is associated with adverse outcomes such as the ability to gain and maintain employment and is associated with an increased risk for substance abuse obesity workplace injuries and traffic accidents A majority of diagnosed children have motor deficits; however, few studies have examined motor deficits in young adults. This study provides a novel examination of visuomotor control of grip force in young adults with and without ADHD. Participants were instructed to maintain force production over a 20-second trial with and without real-time visual feedback about their performance. The results demonstrated that when visual feedback was available, adults with ADHD produced slightly higher grip force than controls. However, when visual feedback was removed, adults with ADHD had a faster rate of decay of force, which was associated with ADHD symptom severity and trait impulsivity. These findings suggest that there may be important differences in the way that adults with ADHD integrate visual feedback during continuous motor tasks. These may account for some of the motor impairments reported in children with ADHD. These deficits could result from (1) dysfunctional sensory motor integration and/or (2) deficits in short-term visuomotor memory
IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network
Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity
- âŠ