2,202 research outputs found
TRUSTS-RESTRAINTS ON ALIENATION-INVALIDITY OF VOTING TRUST WHEREIN VOTING TRUST CERTIFICATES WERE MADE INALIENABLE
Two stockholders, controlling a majority of the class B stock of the X corporation, transferred their stock to themselves jointly as trustees for a ten-year period. The trustees were to vote the stock as a unit, and had full voting powers on all matters affecting the corporation. Trustees agreed not to transfer the stock without the approval of both holders, and the holders agreed not to sell their stock or the voting trust certificates. Moreover, on the death of one holder-trustee, the other had an option to purchase all his interest in the stock. In an action in equity to prevent one of the holders from voting his own stock, the bill was dismissed. On appeal, held, affirmed. The restraint on alienation of the voting trust certificates was an invalid restraint and being inseparable from the rest of the agreement invalidated the entire trust. Tracey v. Franklin, (Del. 1949) 67 A. (2d) 56
Association between transfer of passive immunity, health, and performance of female dairy calves from birth to weaning
The objective of this observational study was to compare calf health, average daily weight gain, and calf mortality considering the proposed categories of transfer of passive immunity (TPI) by the consensus report of Lombard et al. (2020). The consensus report defines 4 categories of passive immunity (excellent, good, fair, and poor) of calves obtained after colostrum ingestion. The association between the 4 TPI categories was analyzed on calf health (i.e., hazards for morbidity and mortality), and average daily weight gain (ADG) of female Holstein Friesian calves during the first 90 d of age. A further aim of this study was to examine the effects of calving-related factors, such as dystocia or winter season, on TPI status. We hypothesized that calves with excellent TPI have greater ADG, lower risks for infectious diseases such as neonatal diarrhea, pneumonia, and omphalitis, and lower mortality rates. This observational study was conducted from December 2017 to March 2021. Blood was collected from 3,434 female Holstein Friesian dairy calves from 1 commercial dairy farm. All female calves aged 2 to 7 d were assessed for TPI status by determination of total solids (TS) in serum via Brix refractometry by the farm personnel once a week. Passive immunity was categorized according to Lombard et al. (2020) with excellent (≥9.4% Brix), good (8.9–9.3% Brix), fair (8.1–8.8% Brix), or poor TPI (<8.1% Brix). For the analysis of ADG and calving ease 492 or 35 calves had to be excluded due to missing data. The distribution of calves according to TPI categories was as follows: 4.8% poor (n = 166), 29.5% fair (n = 1,012), 28.3% good (n = 971), and 37.4% excellent (n = 1,285). From the calving-related factors, parity of the dam, calving ease, birth month, calving assistance by different farm personnel, and day of life for TPI assessment were significantly associated with TS concentration. Out of 3,434 calves, 216 (6.3%) had diarrhea, and 31 (0.9%) and 957 (27.9%) suffered from omphalitis and pneumonia during the first 90 d of life, respectively. Overall, the morbidity during the preweaning period was 32.6% (n = 1,118), and the mortality was 3.1% (n = 107). The ADG was 0.90 ± 0.15 kg with a range of 0.32 to 1.52 kg. The Cox regression model showed that calves suffering from poor TPI tended toward a greater hazard risk (HR) for diarrhea (HR = 1.57, 95% CI: 0.92–2.69) compared with calves with excellent TPI. Calves suffering from TPI had a greater HR for pneumonia (HR = 2.00, CI: 1.53–2-61), overall morbidity (HR = 1.99, CI: 1.56–2.55), and mortality (HR = 2.47, CI: 1.25–4.86) in contrast to excellent TPI. Furthermore, calves with good and fair TPI had significantly greater HR for pneumonia (good TPI: HR = 1.35, CI: 1.15–1.59; fair TPI: HR = 1.41, CI: 1.20–1.65) and overall morbidity (good TPI: HR = 1.26, CI: 1.09–1.47; fair TPI: HR = 1.32, CI: 1.14–1.53) compared with the excellent TPI category. Average daily weight gain during the first 60 d of life was associated with TPI categories. Calves with excellent and good TPI status had ADG of 0.90 ± 0.01 kg/d and 0.92 ± 0.01 kg/d (mean ± SE), respectively. The ADG of calves with fair TPI status was 0.89 ± 0.01 kg/d, and calves suffering from poor TPI had 0.86 ± 0.01 kg/d. Average daily weight gain differed in calves with poor TPI compared with the other categories. Fair and excellent TPI differed additionally from good TPI. We found no statistical difference between the TPI categories fair and excellent. In conclusion, poor TPI was associated with higher morbidity and mortality during the first 90 d of life. Furthermore, calves with fair, good or excellent TPI had greater ADG
Atom clusters and vibrational excitations in chemically-disordered Pt357Fe
Inelastic nuclear resonant scattering spectra of Fe-57 atoms were measured on crystalline alloys of Pt3Fe-57 that were chemically disordered, partially ordered, and L1(2) ordered. Phonon partial density of states curves for Fe-57 were obtained from these spectra. Upon disordering, about 10% of the spectral intensity underwent a distinct shift from 25 to 19 meV. This change in optical modes accounted for most of the change of the vibrational entropy of disordering contributed by Fe atoms, which was (+0.10 +/- 0.03) k(B) (Fe atom)(-1). Prospects for parametrizing the vibrational entropy with low-order cluster variables were assessed. To calculate the difference in vibrational entropy of the disordered and ordered alloys, the clusters must be large enough to account for the abundances of several of the atom configurations of the first-nearest-neighbor shell about the Fe-57 atoms
Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection
The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated with the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. The LODs were in the range of 10–5–10–6 M and were lower than those obtained using bulk Au.2022-07-72022-07-07Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-SC0012704. EB- 14,
University of Valladolid (PIF-UVa)
Ministerio de EconomĂa, Industria y Competitividad – FEDER (Grant CICYT AGL2012-335
The Investigation of Chlorate and Perchlorate/Saponite Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater
The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected O2 and HCl gas releases from all analyzed Gale Crater sediments, which are attributed to the presence of perchlorates and/or chlorates in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates release O2 and HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce significant HCl releases comparable to those detected by the SAM instrument. In order to better explain the Gale Crater HCl releases, perchlorates and chlorates were mixed with Gale Crater analog saponite, which is found at abundances from 8 to 20 wt % in the John Klein and Cumberland drill samples. Mixtures of chlorates or perchlorates with calcium-saponite or ferrian-saponite were heated to 1000 deg C in a Labsys EVO differential scanning calorimeter/mass spectrometer configured to operate similarly to the SAM oven/quadrupole mass spectrometer system. Our results demonstrate that all chlorate and perchlorate mixtures produce significant HCl releases below 1000 deg C as well as depressed oxygen peak release temperatures when mixed with saponite. The type of saponite (calcium or ferrian saponite) did not affect the evolved gas results significantly. Saponite/Mg-perchlorate mixtures produced two HCl releases similar to the Cumberland drilled sample. Mg-chlorate mixed with saponite produced HCl releases similar to the Big Sky drilled sample in an eolian sandstone. A mixture of Ca-perchlorate and saponite produced HCl and oxygen releases similar to the Buckskin mudstone drilled sample and the Gobabeb 2 eolian dune material. Ca-chlorate mixed with saponite produced both HCl and oxygen releases within the same range as the Rock-nest windblown deposit, the Greenhorn eolian sandstone, and the John Klein drilled mudstone. Overall, mixtures of perchlorates or chlorates with saponite provide the first explanation for the high temperature HCl releases in addition to the oxygen releases observed in Gale Crater materials
Correlation of pre-operative cancer imaging techniques with post-operative gross and microscopic pathology images
In this paper, different algorithms for volume reconstruction from tomographic cross-sectional pathology slices are described and tested. A tissue-mimicking phantom made with a mixture of agar and aluminium oxide was sliced at different thickness as per pathological standard guidelines. Phantom model was also virtually sliced and reconstructed in software. Results showed that shape-based spline interpolation method was the most precise, but generated a volume underestimation of 0.5%
A GIS tool for flood risk analysis in Flanders (Belgium)
In the past decades, the low-lying region Flanders (Belgium) has fall victim to numerous flood events, causing substantial damage to buildings and infrastructure. In response to this, the Flemish government proposed a new approach which considers the level of risk as a way for safety measurement. Using geographical information systems, this evolution has lead to a comprehensive risk methodology, and more recently to the development of a flood risk assessment tool called LATIS. By estimating the potential damage and the number of casualties during a flood event, LATIS offers the possibility to perform risk analysis in a fast and effective way. This paper presents a brief overview of the currently used methodology for flood risk management in Flanders and its implementation in the LATIS tool. The usefulness of this new tool is demonstrated by a sequence of risk calculations, performed in the framework of climate change impacts on flood risk in Flanders
Thermal Decomposition of Calcium Perchlorate/Iron-Mineral Mixtures: Implications of the Evolved Oxygen from the Rocknest Eolian Deposit in Gale Crater, Mars
A major oxygen release between 300 and 500 C was detected by the Mars Curiosity Rover Sample Analysis at Mars (SAM) instrument at the Rocknest eolian deposit. Thermal decomposition of perchlorate (ClO4-) salts in the Rocknest samples are a possible explanation for this evolved oxygen release. Releative to Na-, K-, Mg-, and Fe-perchlorate, the thermal decomposition of Ca-perchlorate in laboratory experiments released O2 in the temperature range (400-500degC) closest to the O2 release temperatures observed for the Rocknest material. Furthermore, calcium perchlorate could have been the source of Cl in the chlorinated-hydrocarbons species that were detected by SAM. Different components in the Martian soil could affect the decomposition temperature of calcium per-chlorate or another oxychlorine species. This interaction of the two components in the soil could result in O2 release temperatures consistent with those detected by SAM in the Rocknest materials. The decomposition temperatures of various alkali metal perchlorates are known to decrease in the presence of a catalyst. The objective of this work is to investigate catalytic interactions on calcium perchlorate from various iron-bearing minerals known to be present in the Rocknest materia
- …