23 research outputs found
Holographic Fabry-Perot spectrometer
We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance. © 2011 Optical Society of America.We thank A. Cámara Iglesias for valuable discussions and advice. Financial support from the Spanish Ministry of Science and Innovation under project TEC 2008-04105 is acknowledged.Peer Reviewe
Generation of femtosecond paraxial beams with arbitrary spatial distribution
We present an approach to generate paraxial laser beams with arbitrary spatial distribution in the femtosecond time regime. The proposed technique is based upon a pair of volume phase holographic gratings working in parallel arrangement. It exploits the spatial coherence properties of the incoming laser beam in a compact and robust setup that mitigates angular and spatial chirp. The gratings were recorded in a photopolymerizable glass with a high optical damage threshold and a large optical throughput. Setup performance is studied and experimentally demonstrated by generating Laguerre-Gaussian femtosecond pulses. © 2010 Optical Society of America.We thank Fransisco del Monte for valuable advice and CAI-UCM facilities. The financial support from the Spanish Ministry of Science and Innovation under projects TEC 2008-04105, CTQ2008-02578/BQU and Consolider SAUUL CSD2007-00013 is acknowledged. M. P. H.-G. and P. V. acknowledge the Spanish Ministry of Foreign Affairs and Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq) (Brazil) for financial support, respectively.Peer Reviewe
Holographic Fabry–Perot spectrometer
We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance. © 2011 Optical Society of America.We thank A. Cámara Iglesias for valuable discussions and advice. Financial support from the Spanish Ministry of Science and Innovation under project TEC 2008-04105 is acknowledged.Peer Reviewe
Non-Markovian model for the study of pitting corrosion in a water pipe system
The main studies on pitting consist in proposing Markovian stochastic models, based on the statistics of extreme values and focused on growing the depth of wells, especially the deepest one. We show that a non-Markovian model, described by a nonlinear Fokker–Planck (nFP) equation, properly depicts the time evolution of a distribution of depth values of pits that were experimentally obtained. The solution of this equation in a steady-state regime is a q-Gaussian distribution, i.e. a long-tail probability distribution that is the main characteristic of a nonextensive statistical mechanics. The proposed model, that is applied to data from four inspections conducted on a section of a line of regular water service in power water reactor (PWR) nuclear power plants, is in agreement with experimental results.Fil: Rosa, A. C. P.. Universidade Federal do Oeste da Bahia; Brasil. SENAI Cimatec; BrasilFil: Vaveliuk, Pablo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico la Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones CientÃficas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Moret, M. A.. SENAI Cimatec; Brasil. Universidade do Estado da Bahia; Brasi
Generation of femtosecond paraxial beams with arbitrary spatial distribution
We present an approach to generate paraxial laser beams with arbitrary spatial distribution in the femtosecond time regime. The proposed technique is based upon a pair of volume phase holographic gratings working in parallel arrangement. It exploits the spatial coherence properties of the incoming laser beam in a compact and robust setup that mitigates angular and spatial chirp. The gratings were recorded in a photopolymerizable glass with a high optical damage threshold and a large optical throughput. Setup performance is studied and experimentally demonstrated by generating Laguerre-Gaussian femtosecond pulses
Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses
The majority of the applications of ultrashort laser pulses require a control of its spectral bandwidth. In this paper we show the capability of volume phase holographic gratings recorded in photopolymerizable glasses for spectral pulse reshaping of ultrashort laser pulses originated in an Amplified Ti: Sapphire laser system and its second harmonic. Gratings with high laser induce damage threshold (LIDT) allowing wide spectral bandwidth operability satisfy these demands. We have performed LIDT testing in the photopolymerizable glass showing that the sample remains unaltered after more than 10 million pulses with 0,75 TW/cm^2 at 1 KHz repetition rate. Furthermore, it has been developed a theoretical model, as an extension of the Kogelnik's theory, providing key gratings design for bandwidth operability. The main features of the diffracted beams are in agreement with the model, showing that non-linear effects are negligible in this material up to the fluence threshold for laser induced damage. The high versatility of the grating design along with the excellent LIDT indicates that this material is a promising candidate for ultrashort laser pulses manipulations