230 research outputs found

    Kinks in dipole chains

    Full text link
    It is shown that the topological discrete sine-Gordon system introduced by Speight and Ward models the dynamics of an infinite uniform chain of electric dipoles constrained to rotate in a plane containing the chain. Such a chain admits a novel type of static kink solution which may occupy any position relative to the spatial lattice and experiences no Peierls-Nabarro barrier. Consequently the dynamics of a single kink is highly continuum like, despite the strongly discrete nature of the model. Static multikinks and kink-antikink pairs are constructed, and it is shown that all such static solutions are unstable. Exact propagating kinks are sought numerically using the pseudo-spectral method, but it is found that none exist, except, perhaps, at very low speed.Comment: Published version. 21 pages, 5 figures. Section 3 completely re-written. Conclusions unchange

    How well do self-supervised models transfer to medical imaging?

    Get PDF
    Self-supervised learning approaches have seen success transferring between similar medical imaging datasets, however there has been no large scale attempt to compare the transferability of self-supervised models against each other on medical images. In this study, we compare the generalisability of seven self-supervised models, two of which were trained in-domain, against supervised baselines across eight different medical datasets. We find that ImageNet pretrained self-supervised models are more generalisable than their supervised counterparts, scoring up to 10% better on medical classification tasks. The two in-domain pretrained models outperformed other models by over 20% on in-domain tasks, however they suffered significant loss of accuracy on all other tasks. Our investigation of the feature representations suggests that this trend may be due to the models learning to focus too heavily on specific areas

    Assessment of Multivessel Coronary Artery Disease Using Cardiovascular Magnetic Resonance Pixelwise Quantitative Perfusion Mapping

    Get PDF
    OBJECTIVES: The authors sought to compare the diagnostic accuracy of quantitative perfusion maps to visual assessment (VA) of first-pass perfusion images for the detection of multivessel coronary artery disease (MVCAD). BACKGROUND: VA of first-pass stress perfusion cardiac magnetic resonance (CMR) may underestimate ischemia in MVCAD. Pixelwise perfusion mapping allows quantitative measurement of regional myocardial blood flow, which may improve ischemia detection in MVCAD. METHODS: One hundred fifty-one subjects recruited at 2 centers underwent stress perfusion CMR with myocardial perfusion mapping, and invasive coronary angiography with coronary physiology assessment. Ischemic burden was assessed by VA of first-pass images and by quantitative measurement of stress myocardial blood flow using perfusion maps. RESULTS: In patients with MVCAD (2-vessel [2VD] or 3-vessel disease [3VD]; n = 95), perfusion mapping identified significantly more segments with perfusion defects (median segments per patient 12 [interquartile range (IQR): 9 to 16] by mapping vs. 8 [IQR: 5 to 9.5] by VA; p < 0.001). Ischemic burden (IB) measured using mapping was higher in MVCAD compared with IB measured using VA (3VD mapping 100 % (75% to 100%) vs. first-pass 56% (38% to 81%) ; 2VD mapping 63% (50% to 75%) vs. first-pass 41% (31% to 50%); both p < 0.001), but there was no difference in single-vessel disease (mapping 25% (13% to 44%) vs. 25% (13% to 31%). Perfusion mapping was superior to VA for the correct identification of extent of coronary disease (78% vs. 58%; p < 0.001) due to better identification of 3VD (87% vs. 40%) and 2VD (71% vs. 48%). CONCLUSIONS: VA of first-pass stress perfusion underestimates ischemic burden in MVCAD. Pixelwise quantitative perfusion mapping increases the accuracy of CMR in correctly identifying extent of coronary disease. This has important implications for assessment of ischemia and therapeutic decision-making

    Thoracoscopic vs. catheter ablation for atrial fibrillation: long-term follow-up of the FAST randomized trial

    Get PDF
    Aims: Our objectives were to compare effectiveness and long-term prognosis after epicardial thoracoscopic atrial fibrillation (AF) ablation vs. endocardial catheter ablation, in patients with prior failed catheter ablation or high risk of failure. Methods and results: Patients were randomized to thoracoscopic or catheter ablation, consisting of pulmonary vein isolation with optional additional lines (2007–2010). Patients were reassessed in 2016/2017, and those without documented AF recurrence underwent 7-day ambulatory electrocardiography. The primary rhythm outcome was recurrence of any atrial arrhythmia lasting >30 s. The primary clinical endpoint was a composite of death, myocardial infarction, or cerebrovascular event, analysed with adjusted Cox proportional hazard ratios (HRs). One hundred and 24 patients were randomized with 34% persistent AF and mean age 56 years. Arrhythmia recurrence was common at mean follow-up of 7.0 years, but substantially lower with thoracoscopic ablation: 34/61 (56%) compared with 55/63 (87%) with catheter ablation [adjusted HR 0.40, 95% confidence interval (CI) 0.25–0.64; P < 0.001]. Additional ablation procedures were performed in 8 patients (13%) compared with 31 (49%), respectively (P < 0.001). Eleven patients (19%) were on anti-arrhythmic drugs at end of follow-up with thoracoscopy vs. 24 (39%) with catheter ablation (P = 0.012). There was no difference in the composite clinical outcome: 9 patients (15%) in the thoracoscopy arm vs. 10 patients (16%) with catheter ablation (HR 1.11, 95% CI 0.40–3.10; P = 0.84). Pacemaker implantation was required in 6 patients (10%) undergoing thoracoscopy and 3 (5%) in the catheter group (P = 0.27). Conclusion: Thoracoscopic AF ablation demonstrated more consistent maintenance of sinus rhythm than catheter ablation, with similar long-term clinical event rates

    Interrogation of the infarcted and salvaged myocardium using multi-parametric mapping cardiovascular magnetic resonance in reperfused ST-segment elevation myocardial infarction patients

    Get PDF
    We used multi-parametric cardiovascular magnetic resonance (CMR) mapping to interrogate the myocardium following ST-segment elevation myocardial infarction (STEMI). Forty-eight STEMI patients underwent CMR at 4 ± 2 days. One matching short-axis slice of native T1 map, T2 map, late gadolinium enhancement (LGE), and automated extracellular volume fraction (ECV) maps per patient were analyzed. Manual regions-of-interest were drawn within the infarcted, the salvaged and the remote myocardium. A subgroup analysis was performed in those without MVO and with ≤75% transmural extent of infarct. For the whole cohort, T1, T2 and ECV in both the infarcted and the salvaged myocardium were significantly higher than in the remote myocardium. T1 and T2 could not differentiate between the salvaged and the infarcted myocardium, but ECV was significantly higher in the latter. In the subgroup analysis of 15 patients, similar findings were observed for T1 and T2. However, there was only a trend towards ECV_{salvage} being higher than ECV_{remote}. In the clinical setting, current native T1 and T2 methods with the specific voxel sizes at 1.5 T could not differentiate between the infarcted and salvaged myocardium, whereas ECV could differentiate between the two. ECV was also higher in the salvaged myocardium when compared to the remote myocardium

    Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma

    Get PDF
    T-cell acute lymphoblastic leukemia and lymphoma (T-ALL/T-LBL) are aggressive hematological malignancies that are currently treated with high dose chemotherapy. Over the last years, the search towards novel and less toxic therapeutic strategies for T-ALL/T-LBL patients has largely focused on the identification of cell intrinsic properties of the tumor cell. However, non cell autonomous activation of specific oncogenic pathways might also offer opportunities that could be exploited at the therapeutic level. In line with this, we here show that endogenous IL7 can increase the expression of the oncogenic kinase PIM1 in CD127+ T-ALL/T-LBL, thereby rendering these tumor cells sensitive to in vivo PIM inhibition. In addition, using different CD127+ T-ALL/T-LBL xenograft models, we also reveal that residual tumor cells, which remain present after short-term in vivo chemotherapy, display consistent upregulation of PIM1 as compared to bulk non-treated tumor cells. Notably, this effect was transient as increased PIM1 levels were not observed in reestablished disease after abrogation of the initial chemotherapy. Furthermore, we uncover that this phenomenon is, at least in part, mediated by the ability of glucocorticoids to cause transcriptional upregulation of IL7RA in T-ALL/T-LBL PDX cells, ultimately resulting in non-cell autonomous PIM1 upregulation by endogenous IL7. Finally, we confirm in vivo that chemotherapy in combination with a pan-PIM inhibitor can improve leukemia survival in a PDX model of CD127+ T-ALL. Altogether, our work reveals that IL7 and glucocorticoids coordinately drive aberrant activation of PIM1 and suggests that IL7 responsive CD127+ T-ALL and T-LBL patients could benefit from PIM inhibition during induction chemotherapy

    Is the functional interaction between adenosine A2A receptors and metabotropic glutamate 5 receptors a general mechanism in the brain? Differences and similarities between the striatum and the hippocampus

    Get PDF
    The aim of the present paper was to examine, in a comparative way, the occurrence and the mechanisms of the interactions between adenosine A2A receptors (A2ARs) and metabotropic glutamate 5 receptors (mGlu5Rs) in the hippocampus and the striatum. In rat hippocampal and corticostriatal slices, combined ineffective doses of the mGlu5R agonist 2-chloro-5-hydroxyphenylglycine (CHPG) and the A2AR agonist CGS 21680 synergistically reduced the slope of excitatory postsynaptic field potentials (fEPSPs) recorded in CA1 and the amplitude of field potentials (FPs) recorded in the dorsomedial striatum. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway appeared to be involved in the effects of CGS 21680 in corticostriatal but not in hippocampal slices. In both areas, a postsynaptic locus of interaction appeared more likely. N-methyl-D-aspartate (NMDA) reduced the fEPSP slope and FP amplitude in hippocampal and corticostriatal slices, respectively. Such an effect was significantly potentiated by CHPG in both areas. Interestingly, the A2AR antagonist ZM 241385 significantly reduced the NMDA-potentiating effect of CHPG. In primary cultures of rat hippocampal and striatal neurons (ED 17, DIV 14), CHPG significantly potentiated NMDA-induced lactate dehydrogenase (LDH) release. Again, such an effect was prevented by ZM 241385. Our results show that A2A and mGlu5 receptors functionally interact both in the hippocampus and in the striatum, even though different mechanisms seem to be involved in the two areas. The ability of A2ARs to control mGlu5R-dependent effects may thus be a general feature of A2ARs in different brain regions (irrespective of their density) and may represent an additional target for the development of therapeutic strategies against neurological disorders

    Prognostic Significance of Changes in Heart Rate Following Uptitration of Beta-Blockers in Patients with Sub-Optimally Treated Heart Failure with Reduced Ejection Fraction in Sinus Rhythm versus Atrial Fibrillation

    Get PDF
    Background: In patients with heart failure with reduced ejection fraction (HFrEF) on sub-optimal doses of beta-blockers, it is conceivable that changes in heart rate following treatment intensification might be important regardless of underlying heart rhythm. We aimed to compare the prognostic significance of both achieved heart rate and change in heart rate following beta-blocker uptitration in patients with HFrEF either in sinus rhythm (SR) or atrial fibrillation (AF). Methods: We performed a post hoc analysis of the BIOSTAT-CHF study. We evaluated 1548 patients with HFrEF (mean age 67 years, 35% AF). Median follow-up was 21 months. Patients were evaluated at baseline and at 9 months. The combined primary outcome was all-cause mortality and heart failure hospitalisation stratified by heart rhythm and heart rate at baseline. Results: Despite similar changes in heart rate and beta-blocker dose, a decrease in heart rate at 9 months was associated with reduced incidence of the primary outcome in both SR and AF patients [HR per 10 bpm decrease—SR: 0.83 (0.75–0.91), p &lt; 0.001; AF: 0.89 (0.81–0.98), p = 0.018], whereas the relationship was less strong for achieved heart rate in AF [HR per 10 bpm higher—SR: 1.26 (1.10–1.46), p = 0.001; AF: 1.08 (0.94–1.23), p = 0.18]. Achieved heart rate at 9 months was only prognostically significant in AF patients with high baseline heart rates (p for interaction 0.017 vs. low). Conclusions: Following beta-blocker uptitration, both achieved and change in heart rate were prognostically significant regardless of starting heart rate in SR, however, they were only significant in AF patients with high baseline heart rate

    Auditory Development between 7 and 11 Years: An Event-Related Potential (ERP) Study

    Get PDF
    Background: There is considerable uncertainty about the time-course of central auditory maturation. On some indices, children appear to have adult-like competence by school age, whereas for other measures development follows a protracted course. Methodology: We studied auditory development using auditory event-related potentials (ERPs) elicited by tones in 105 children on two occasions two years apart. Just over half of the children were 7 years initially and 9 years at follow-up, whereas the remainder were 9 years initially and 11 years at follow-up. We used conventional analysis of peaks in the auditory ERP, independent component analysis, and time-frequency analysis. Principal Findings: We demonstrated maturational changes in the auditory ERP between 7 and 11 years, both using conventional peak measurements, and time-frequency analysis. The developmental trajectory was different for temporal vs. fronto-central electrode sites. Temporal electrode sites showed strong lateralisation of responses and no increase of low-frequency phase-resetting with age, whereas responses recorded from fronto-central electrode sites were not lateralised and showed progressive change with age. Fronto-central vs. temporal electrode sites also mapped onto independent components with differently oriented dipole sources in auditory cortex. A global measure of waveform shape proved to be the most effective method for distinguishing age bands. Conclusions/Significance: The results supported the idea that different cortical regions mature at different rates. The ICC measure is proposed as the best measure of 'auditory ERP age'

    e-Science and biological pathway semantics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science.</p> <p>Results</p> <p>We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs.</p> <p>Conclusion</p> <p>Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.</p
    corecore