9 research outputs found

    New challenges in solar energy resource and forecasting in Greece

    No full text
    Aerosols and clouds are the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. Under cloudy skies, the high temporal and spatial variability of cloudiness is the key factor for the estimation of solar irradiance. In this study, recent research activities related to the climatology and the prediction of solar energy in Greece are presented with emphasis on new challenges in the climatology of global horizontal irradiance (GHI) and direct normal irradiance (DNI), the changes of DNI due to the decreasing aerosol optical depth and the short-term (15–240 min) forecasts of solar irradiance with the collaborative use of neural networks and satellite images

    Determination of the optimal camera distance for cloud height measurements with two all-sky imagers

    Get PDF
    All-sky imager based systems can be used to measure a number of cloud properties. Configurations consisting of two all-sky imagers can be used to derive cloud heights for weather stations, aviation and nowcasting of solar irradiance. One key question for such systems is the optimal distance between the all-sky imagers. This problem has not been studied conclusively in the literature. To the best of our knowledge, no previous in-field study of the optimal camera distance was performed. Also, comprehensive modeling is lacking. Here, we address this question with an in-field study on 93 days using 7 camera distances between 494 m and 2562 m and one specific cloud height estimation approach. We model the findings and draw conclusions for various configurations with different algorithmic methods and camera hardware. The camera distance is found to have a major impact on the accuracy of cloud height determinations. For the used 3 megapixel cameras, cloud heights up to 12,000 m and the used algorithmic approaches, an optimal camera distance of approximately 1500 m is determined. Optimal camera distances can be reduced to less than 1000 m if higher camera resolutions (e.g. 6 megapixel) are deployed. A step-by-step guide to determine the optimal camera distance is provided

    Aerial additive manufacturing with multiple autonomous robots

    No full text
    Additive manufacturing methods 1–4 using static and mobile robots are being developed for both on-site construction 5–8 and off-site prefabrication 9, 10. Here we introduce a new method of additive manufacturing, referred to as Aerial Additive Manufacturing (Aerial-AM), that utilizes a team of aerial robots inspired by natural builders 11 such as wasps who use collective building methods 12, 13. We present a scalable multi-robot 3D printing and path planning framework that enables robot tasks and population size to be adapted to variations in print geometry throughout a building mission. The multi-robot manufacturing framework allows for autonomous 3D printing under human supervision, real-time assessment of printed geometry and robot behavioural adaptation. To validate autonomous Aerial-AM based on the framework, we develop BuilDrones for depositing materials during flight and ScanDrones for measuring print quality, and integrate a generic real-time model-predictive-control scheme with the Aerial-AM robots. In addition, we integrate a dynamically self-aligning delta manipulator with the BuilDrone to further improve manufacturing accuracy to 5mm for printing geometry with precise trajectory requirements, and develop four cementitious-polymeric composite mixtures suitable for continuous material deposition. We demonstrate proof-of-concept prints including a cylinder of 2.05m with a rapid curing insulation foam material and a cylinder of 0.18m with strutural pseudoplastic cementitious material, a light-trail virtual print of a dome-like geometry, and multi-robot simulations. Aerial-AM allows manufacturing in-flight 2 and offers future possibilities for building in unbounded, at height, or hard to access locations
    corecore