47 research outputs found

    The origin of late archaean granitoids in the Sukumaland greenstone belt of Northern Tanzania: geochemical and isotopic constraints

    Get PDF
    Granitoids intruding the late Archaean sequences of the Sukumaland Greenstone Belt of northern Tanzania belong to two distinct geochemical suites. Suite 1 is characterised by Na2O/K2O > 1 (1.04 – 4.67), high Sr/Y (56 – 204) and Ba/Rb ratios (6.1 – 27.1) and low Rb/Sr ratios (0.08 - 0.25). The rocks are enriched in Sr (405 – 1264 ppm) and depleted in Yb (0.17 – 0.93 ppm) and Rb (56 – 132 ppm). On chondrite-normalised REE diagrams, the rocks display highly fractionated patterns characterised by relative LREE enrichment ((La/Yb)N = 23 – 128 and (Gd/Yb)N = 3.10 – 8.54) and lower concentrations of the HREE (YbN = 0.80 – 4.45). On primitive mantle-normalised spidergrams, Nb and Ti, together with P and Y are depleted relative to adjacent elements. The major and trace element characteristics of Suite 1 are comparable to those of typical Archaean TTG suites and High Silica Adakites (HSA). Suite 2 granitoids are characterised by Na2O/K2O < 1, low Sr/Y (2.80 – 41.7) and Ba/Rb (0.40 – 8.91) ratios and high Rb/Sr (0.30 – 6.27) ratios. Suite 2 is also characterised by low Sr (53 - 326 ppm) and high Rb (40 - 365 ppm) and Yb (0.44 – 1.36 ppm) contents. Compared to Suite 1, Suite 2 rocks display less fractionated REE patterns ((La/Yb)N = 15 – 86 and (Gd/Yb)N = 1.73 – 6.74) and are characterised by higher concentrations of the HREE (YbN = 2.1 – 6.5). On primitive mantle-normalised spidergrams, Suite 2 samples, like those of Suite 1, show relative depletion in Th, Nb and Ti, together with P and Y relative to adjacent elements. Sm-Nd mean crustal residence ages for both suites are indistinguishable and range between 2470 and 2720 Ma with a mean of 2610 &#61617; 35 Ma (2 SE), similar to the emplacement age of 2620 &#61617; 40 Ma. The granitoids are interpreted to have formed by partial melting at the base of a late Archaean thickened sub-arc basaltic crust. Melting to form the Suite 1 granitoids occurred in the eclogite stability field whereas Suite 2 formed by melting at shallower depth in the garnet amphibolite stability field. Tanzania Journal of Science Vol. 32 (1) 2006: pp. 75-8

    Hydrogeochemistry of sulphur isotopes in the Kalix river catchment, northern Sweden

    No full text
    GodkÀnd; 1994; Bibliografisk uppgift: Abstraktvolym, Goldschmidt Conference 1994, Edinburgh; 20080228 (ysko

    Geochronological, stable isotopes and fluid inclusion constraints for a premetamorphic development of the intrusive-hosted Björkdal Au deposit, northern Sweden

    No full text
    The Björkdal gold deposit, bound to a quartz vein system which is mainly hosted by a quartz-monzodioritic intrusion, is situated at the easternmost part of the 1.9 Ga Skellefte base metal district in the Fennoscandian shield. Three fluid stages may be distinguished, referred to as a “barren” stage, a main gold stage, and a remobilization stage, respectively. From oxygen and hydrogen isotope evidence, it is argued that fluids of different origins (magmatic and surface waters) penetrated the ore zone at the inferred stages, but regional metamorphic fluids appear essentially only to have redistributed elements. Early quartz veining took place during a pre-metamorphic stage at ca. 1.88 Ga, as evidenced by unradiogenic galena data and an Sm–Nd scheelite errorchron of 1,915 ± 32 Ma (MSWD = 0.25). Temporarily, the main ore-forming stage was closely related to the first barren stage and took place during a major uplift event close to 1.88 Ga. Although other source rocks cannot be totally ruled out, available isotope data (O, S, Sr and Pb) are seemingly consistent with the view that these elements, and by inference other ore elements, were derived from the host intrusion
    corecore