69 research outputs found

    Internet self-efficacy does not predict student use of Internet-mediated educational technology

    Get PDF
    Two studies tested the hypothesis that use of learning technologies among undergraduate psychology students was associated with higher Internet self-efficacy (ISE). In Study 1, the ISE scores of 86 students were found not to be associated with either attitudes towards, or measured use of, blogs and wikis as part of an IT skills course. ISE was associated with time spent online, and positive attitudes to wikis were associated with higher use. Study 2 measured 163 students’ ISE scores at the beginning and end of the same course. ISE was again not correlated with attitudes towards, or actual measured use of, learning technologies used in the course. However, ISE was shown to increase during the course. Positive attitudes towards wikis and discussion boards were associated with higher use of each. Overall, ISE scores did not influence measured use of a Virtual Learning Environment (VLE, including blogs, wikis and a discussion board), or attitudes towards those technologies. This implies that while ISE is linked to aspects of online behaviour (time spent online) and can be modified by online activity or training, it does not predict student use of educational Internet technologies

    Language-free graphical signage improves human performance and reduces anxiety when working collaboratively with robots

    Get PDF
    As robots become more ubiquitous, and their capabilities extend, novice users will require intuitive instructional information related to their use. This is particularly important in the manufacturing sector, which is set to be transformed under Industry 4.0 by the deployment of collaborative robots in support of traditionally low-skilled, manual roles. In the first study of its kind, this paper reports how static graphical signage can improve performance and reduce anxiety in participants physically collaborating with a semi-autonomous robot. Three groups of 30 participants collaborated with a robot to perform a manufacturing-type process using graphical information that was relevant to the task, irrelevant, or absent. The results reveal that the group exposed to relevant signage was significantly more accurate in undertaking the task. Furthermore, their anxiety towards robots significantly decreased as a function of increasing accuracy. Finally, participants exposed to graphical signage showed positive emotional valence in response to successful trials. At a time when workers are concerned about the threat posed by robots to jobs, and with advances in technology requiring upskilling of the workforce, it is important to provide intuitive and supportive information to users. Whilst increasingly sophisticated technical solutions are being sought to improve communication and confidence in human-robot co-working, our findings demonstrate how simple signage can still be used as an effective tool to reduce user anxiety and increase task performance

    Comparing motivational, self-regulatory and habitual processes in a computer-tailored physical activity intervention in hospital employees - Protocol for the PATHS randomised controlled trial

    Get PDF
    Background: Most people do not engage in sufficient physical activity to confer health benefits and to reduce risk of chronic disease. Healthcare professionals frequently provide guidance on physical activity, but often do not meet guideline levels of physical activity themselves. The main objective of this study is to develop and test the efficacy of a tailored intervention to increase healthcare professionals' physical activity participation and quality of life, and to reduce work-related stress and absenteeism. This is the first study to compare the additive effects of three forms of a tailored intervention using different techniques from behavioural theory, which differ according to their focus on motivational, self-regulatory and/or habitual processes. Methods/Design: Healthcare professionals (N = 192) will be recruited from four hospitals in Perth, Western Australia, via email lists, leaflets, and posters to participate in the four group randomised controlled trial. Participants will be randomised to one of four conditions: (1) education only (non-tailored information only), (2) education plus intervention components to enhance motivation, (3) education plus components to enhance motivation and self-regulation, and (4) education plus components to enhance motivation, self-regulation and habit formation. All intervention groups will receive a computer-tailored intervention administered via a web-based platform and will receive supporting text-messages containing tailored information, prompts and feedback relevant to each condition. All outcomes will be assessed at baseline, and at 3-month follow-up. The primary outcome assessed in this study is physical activity measured using activity monitors. Secondary outcomes include: quality of life, stress, anxiety, sleep, and absenteeism. Website engagement, retention, preferences and intervention fidelity will also be evaluated as well as potential mediators and moderators of intervention effect. Discussion: This is the first study to examine a tailored, technology-supported intervention aiming to increase physical activity in healthcare professionals. The study will evaluate whether including additional theory-based behaviour change techniques aimed at promoting motivation, self-regulation and habit will lead to increased physical activity participation relative to information alone. The online platform developed in this study has potential to deliver efficient, scalable and personally-relevant intervention that can be translated to other occupational settings. Trial registration: Australian New-Zealand Clinical Trial Registry: ACTRN12616000462482, submitted 29/03/2016, prospectively registered 8/04/2016

    A Power-Efficient LC Quadrature VCO for RFID, Zigbee and Bluetooth Standards

    No full text
    A multi-band CMOS LC Quadrature Voltage Control Oscillator (QVCO) with minimum power consumption is developed to meet the phase noise and frequency band requirements of RFID, Zigbee and Bluetooth standards. To accomplish the multi-band receiving architecture at low power consumption, current switching technique with optimized cross-coupled transistor sizes has been used. A comprehensive analysis of small signal model for complementary architecture including transistor noise sources and their effects on output phase noise amount has been discussed. Using extracted small signal model, coupled and coupling transistor sizes for minimum power consumption and the least achievable phase noise have been optimized. Designed QVCO has been implemented using TSMC 0.18um CMOS technology operating at 1.8V supply voltage. Proposed QVCO generates two separated frequency bands of 1.65-1.85GHz and 2.4-2.5GHz with phase noise of -125dBc/Hz at frequency offset of 3MHz. The total current drawn by QVCO is 7.5mA which makes the power consumption as low as 13.5mW

    An augmented prony method for power system oscillation analysis using synchrophasor data

    No full text
    Intrinsic mode functions (IMFs) provide an intuitive representation of the oscillatory modes and are mainly calculated using Hilbert–Huang transform (HHT) methods. Those methods, however, suffer from the end effects, mode-mixing and Gibbs phenomena since they use an iterative procedure. This paper proposes an augmented Prony method for power system oscillation analysis using synchrophasor data obtained from a wide-area measurement system (WAMS). In the proposed method, in addition to the estimation of the modal information, IMFs are extracted using a new explicit mathematical formulation. Further, an indicator based on an energy and phase relationship of IMFs is proposed, which allows system operators to recognize the most effective generators/actuators on specific modes. The method is employed as an online oscillation-monitoring framework providing inputs for the so-called wide-area damping control (WADC) module. The efficacy of the proposed method is validated using three test cases, in which the IMFs calculation is simpler and more accurate if compared with other methods

    Measurement of photoneutron dose produced by wedge filters of a high energy linac using polycarbonate films

    Get PDF
    Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high energy linacs are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. In addition, using conventional linacs necessitates applying wedge filters in some clinical conditions. However, there is not enough information on the effect of these filters on the photoneutrons produced. The aim of this study was to investigate the change of photoneutron dose equivalent due to the use of linac wedge filters. A high energy (18 MV) linear accelerator (Elekta SL 75/25) was studied. Polycarbonate films were used to measure the dose equivalent of photoneutrons. After electrochemical etching of the films, the neutron dose equivalent was calculated using Hp(10) factor, and its variation on the patient plane at 0, 5, 10, 50 and 100 cm from the center of the X-ray beam was determined. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the open and wedged fields. Increasing of the field size increased the photoneutron dose equivalent. The use of wedge filter increased the proportion of the neutron dose equivalent. The increase can be accounted for by the selective absorption of the high energy photons by the wedge filter

    A Power-Efficient LC Quadrature VCO for RFID, Zigbee and Bluetooth Standards

    No full text
    corecore