424 research outputs found

    Magnetocaloric effect and improved relative cooling power in (La0.7Sr0.3MnO3/SrRuO3) superlattices

    Full text link
    Magnetic properties of a series of (La0.7Sr0.3MnO3/SrRuO3) superlattices, where the SrRuO3 layer thickness is varying, are examined. A room-temperature magnetocaloric effect is obtained owing to the finite size effect which reduces the TC of La0.7Sr0.3MnO3 layers. While the working temperature ranges are enlarged,, -DeltaSmax values remains similar to the values in polycrystalline La0.7Sr0.3MnO3. Consequently, the relative cooling powers are significantly improved, the microscopic mechanism of which is related to the effect of the interfaces at La0.7Sr0.3MnO3/SrRuO3 and higher nanostructural disorder. This study indicates that artificial oxide superlattices/multilayers might provide an alternative pathway in searching for efficient room-temperature magnetic refrigerators for (nano)microscale systems.Comment: 14^pages, 3 figures, Submitted to J. Phys. Cond. Ma

    Proffering Ranks to the Smart Cities based on the Data Received from IoT Devices using Visualization Techniques

    Get PDF
    Innovative lifestyle in cities upgraded the smart infrastructure and sustainable significance in the countries worldwide. A new approach is proposed to analyze the smart-city indexing across the world based on the key features to proffer the city ranking. The key features like smart-mobility refers to the Intelligent movement of citizens, smart environment refers to improvement in the efficiency of inhabitance within the city, smart governance used in applying innovative technological implementation to provide service, smart economy refers to the improvement in various urban aspects and livelihood. Proposed approach focuses on classifying the smart innovative infrastructural implementation in the urban livelihood for city data visualization and proffering cluster ranks by validating the proffering with Convolutional-Neural Network (CNN). To collect the data, we used IoT sensors information by integrating the sensors of six feature metrics in city-hubs. The huge data collected from the sensors are utilized to perform the smart-city visualization. Data are analyzed using statistical procedure by grouping the similar data to applying folium cluster techniques and fuzzy mapping. A detailed description and analysis of smart indexing are grounded by proffering effectively, in addition the subsequent research analysis is recommended for the researchers

    A New Hybrid Root-Finding Algorithm to Solve Transcendental Equations Using Arcsine Function

    Get PDF
    The objective of this paper is to propose a new hybrid root finding algorithms for solving non-linear equations (NLEs) or transcendental equations (TEs). The proposed algorithm is based on the trigonometrical algorithm using arcsine function to find a root. Several numerical examples are presented to illustrate the proposed algorithms, and comparisons are presented with other existing methods to show efficiency and accuracy. Implementation of the proposed algorithms is presented in a mathematical software tool Maple

    Application of bifurcation methods for the prediction of low-speed aircraft ground performance

    Get PDF
    The design of aircraft for ground maneuvers is an essential part in satisfying the demanding requirements of the aircraft operators. Extensive analysis is done to ensure that a new civil aircraft type will adhere to these requirements, for which the nonlinear nature of the problem generally adds to the complexity of such calculations. Small perturbations in velocity, steering angle, or brake application may lead to significant differences in the final turn widths that can be achieved. Here, the U-turn maneuver is analyzed in detail, with a comparison between the two ways in which this maneuver is conducted. A comparison is also made between existing turn-width prediction methods that consist mainly of geometric methods and simulations and a proposed new method that uses dynamical systems theory. Some assumptions are made with regard to the transient behavior, for which it is shown that these assumptions are conservative when an upper bound is chosen for the transient distance. Furthermore, we demonstrate that the results from the dynamical systems analysis are sufficiently close to the results from simulations to be used as a valuable design tool. Overall, dynamical systems methods provide an order-of-magnitude increase in analysis speed and capability for the prediction of turn widths on the ground when compared with simulations. Nomenclature co = oleo damping coefficient, N s2 =m2 cz = tire vertical damping coefficient Fco = damping force in oleo due to the orifice,

    Interaction of torsion and lateral bending in aircraft nose landing gear shimmy

    Get PDF
    In this paper we consider the onset of shimmy oscillations of an aircraft nose landing gear. To this end we develop and study a mathematical model with torsional and lateral bending modes that are coupled through a wheel-mounted elastic tyre. The geometric effects of a positive rake angle are fully incorporated into the resulting five-dimensional ordinary differential equation model. A bifurcation analysis in terms of the forward velocity and the vertical force on the gear reveals routes to different types of shimmy oscillations. In particular, we find regions of stable torsional and stable lateral shimmy oscillations, as well as transient quasiperiodic shimmy where both modes are excited

    Numerical continuation analysis of a dual-sidestay main landing gear mechanism

    Get PDF
    A model of a three-dimensional dual-sidestay landing gear mechanism is presented and employed in an investigation of the sensitivity of the downlocking mechanism to attachment point deflections. A motivation for this study is the desire to understand the underlying nonlinear behavior, which may prevent a dual-sidestay landing gear from downlocking under certain conditions. The model formulates the mechanism as a set of steady-state constraint equations. Solutions to these equations are then continued numerically in state and parameter space, providing all state parameter dependencies within the model from a single computation. The capability of this analysis approach is demonstrated with an investigation into the effects of the aft sidestay angle on retraction actuator loads. It was found that the retraction loads are not significantly affected by the sidestay plane angle, but the landing gear’s ability to be retracted fully is impeded at certain sidestay plane angles. This result is attributed to the landing gear’s geometry, as the locklinks are placed under tension and cause the mechanism to lock. Sidestay flexibilities and attachment point deflections are then introduced to enable the downlock loads to be investigated. The investigation into the dual sidestay’s downlock sensitivity to attachment point deflections yields an underlying double-hysteresis loop, which is highly sensitive to these deflections. Attachment point deflections of a few millimeters were found to prevent the locklinks from automatically downlocking under their own weight, hence requiring some external force to downlock the landing gear. Sidestay stiffness was also found to influence the downlock loads, although not to the extent of attachment point deflection
    • …
    corecore