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Bifurcation Analysis of Nose Landing Gear Shimmy

with Lateral and Longitudinal Bending

Phanikrishna Thota∗ Bernd Krauskopf ∗

Mark Lowenberg†

Faculty of Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom

We develop and study a model of an aircraft nose landing gear with torsional, lateral and

longitudinal degrees of freedom. The corresponding three modes are coupled in a nonlinear

fashion via the geometry of the landing gear in the presence of a nonzero rake angle, as

well as via the nonlinear tyre forces. Their interplay may lead to different types of shimmy

oscillations as a function of the forward velocity and the vertical force on the landing

gear. Methods from nonlinear dynamics, especially numerical continuation of equilibria

and periodic solutions, are used to asses how the three modes contribute to different types

of shimmy dynamics. We conclude that the longitudinal mode does not actively participate

in the nose landing gear dynamics over the entire range of forward velocity and vertical

force.

I. Introduction

Unwanted oscillations in wheeled vehicles — generally referred to as shimmy oscillations — can be caused
by a variety of factors, such as component flexibilities, freeplay, etc.1–4 Even though the triggering mechanism
for shimmy oscillations may vary in different types of vehicles, the consequences of such oscillations are wear
and tear of components and discomfort to the riders. Specifically, in the case of aircraft landing gears,
considered here, extreme shimmy oscillations can result in high maintenance costs, and also in violent
vibrations in the cockpit, sometimes even restricting the pilot’s ability to read the instrument panel.

Efforts to study shimmy oscillations, initially in cars, date back to the early 1900’s. As entry points
to the literature see, for example, the surveys by Dengler et al.,5 Smiley6 and Pritchard,7 who discuss
theoretical as well as experimental studies, stressing both tyre theories and structural aspects of shimmy
oscillations. Broulhiet’s8 seminal work on the effect of side slip of an elastic tyre on shimmy oscillations forms
the basis for many modern shimmy studies. However, it was von Schlippe and Dietrich9 who developed one
of the earliest and still widely used models — the stretched string model of tyre kinematics — and used it for
shimmy analysis of an aircraft landing gear. Smiley6 studied shimmy oscillations in aircraft for three different
landing gear structures and studied them by means of linear stability analysis. Furthermore, he provided a
comprehensive comparison of different tyre models. Even though one of the landing gears Smiley considered
included a nonzero rake angle, its nonlinear and geometric effects were not considered in his analysis. More
recently Somieski10 performed time domain analysis of a set of nonlinear ordinary differential equations
representing a nose landing gear. He reported that stable shimmy oscillations appear (and disappear) via a
Hopf bifurcation11, 12 and exist over a range of velocities of the aircraft. A different approach was taken by
Woerner and Noel13 who studied shimmy oscillations by frequency analysis. They described the main cause
of shimmy oscillations as the energy transfer from the contact force between the tyres and the ground to
vibrational modes of the landing gear. In particular, Woerner and Noel studied the dependence of frequency
on the swivel friction and forward velocity; this suggested that coupled motion may occur due to resonance
phenomena when the forward velocity changes, a mechanism that may lead to high-amplitude shimmy
oscillations.
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In this paper we study the onset and stability of shimmy oscillations in an aircraft nose landing gear
in a free rolling scenario with emphasis on the influence of different vibrational modes on the landing gear
dynamics. We consider here the main three vibrational modes of a generic midsize commercial passenger
aircraft, which are: the torsional mode corresponding to the rotation about the gear strut axis, the lateral
bending mode that is representative of vibrations of the gear from left to right, and the longitudinal bending
mode in the direction of straight-line travel of the aircraft. These modes of vibration are coupled via the
geometry of the gear and via the force generated at the tyre-ground contact. Their nonlinear interaction plays
an important role in aircraft shimmy dynamics. Note that we do not consider the vertical mode associated
with the oleos (shock dampers) of the gear. Even though some of the earlier works5 on aircraft shimmy
oscillations reported that the vertical mode may be excited due to rough runways, this is not generally the
case on today’s smooth runways.

Specifically, we develop and study a seven-dimensional ordinary differential equation model for the tor-
sional, lateral and longitudinal modes and the tyre force. In a first-order approximation each vibrational
mode is modeled as a single degree of freedom oscillator, which is coupled with the other modes via the gear
geometry and the tyre-ground contact. The elastic tyre is modeled by a modified version of the stretched
string model9 that includes the effect of the lateral bending mode on the deformation of the tyre. Impor-
tantly, we consider the case of a nonzero rake angle of the gear, which has consequences for the coupling of
the modes via nonlinear geometric effects.

The model presented here is an extension of a five-dimensional model that we developed previously,14

which does not include the longitudinal degree of freedom, but allowed for the nonlinear interaction between
the torsional and lateral modes in an aircraft nose landing gear. This made it possible to identify types of
shimmy oscillations that are dominated either by the torsional mode, the lateral mode, or transient behaviour
featuring contributions from both. In the latter case one may find quasiperiodic shimmy oscillations, which
is characterized by two incommensurate frequencies.11, 12 We remark that stable quasiperiodic shimmy
oscillations have been found by Pacejka15 in the quite different setting of a pulled trailer with zero rake angle
and negligible damping.

The main question that we address is whether the inclusion of the longitudinal mode affects the dynamics
in a significant way. To answer this question we perform time and frequency domain analysis of the different
types of shimmy oscillations with matlab, in conjunction with a numerical bifurcation analysis with the
software package auto.17 This allows us to assess the role of the longitudinal mode over the entire relevant
operational range of forward velocity of the aircraft and vertical force on the gear by means of one- and two-
parameter bifurcation diagrams. We also investigate how regions of different types of shimmy oscillations in
the two-parameter bifurcation diagrams change with the damping in the torsional mode.

The paper is organized as follows. Section II introduces and discusses the mathematical model of the nose
landing gear. Section III is devoted to the analysis of the model, where we show representative time series
and frequency spectra, one-parameter continuations in the forward velocity, and a two-parameter bifurcation
diagram in the plane of forward velocity and vertical force on the gear. Section IV investigates the influence
of torsional damping on the bifurcation diagrams. Finally, Sec. V summarizes and discusses directions of
future research.

II. Model of a nose landing gear

The nose landing gear of an aircraft as considered here is shown in Fig. 1. A wheel with pneumatic tyre
of radius R is mounted on an axle that is connected to a strut via a mechanical caster (trail) of length e. The
combined effect of the fuselage and wings is modeled as a block of mass that exerts a vertical force Fz on the
gear while moving with a forward velocity V . We use one of the conventionally accepted coordinate systems
for aircraft analysis, where the positive x-axis is along the fuselage centerline, and points in the backward
direction of the aircraft, the z-axis is the upward normal to the flat ground, and the y-axis completes the
right-handed coordinate system. In the static equilibrium position of the gear, the strut axis lies in the
(x, z)-plane, and it is inclined to the vertical at a rake angle φ. Note that the rake angle varies significantly
from one aircraft type to the other and may be anywhere in the range of 0–30 degrees, while a range of 0–15
degrees is more typical for commercial passenger aircraft.

We consider here a nose landing gear with three geometrical degrees of freedom. First, the gear may
rotate about the strut axis S, which gives rise to the torsional mode described by the torsion angle ψ (rad).
Second, the gear may bend about the x-axis, which gives rise to the lateral mode. It is described in a
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Figure 1. Schematic side (a), front (b) and top (c) views of an aircraft nose landing gear.

first-order approach by the angle δ (rad) over which the strut is rotated about the mount point in the lateral
direction. Third, the gear may bend about the y-axis, which gives rise to the longitudinal mode as described
by the angle β (rad) over which the strut is rotated in the longitudinal direction. The model considered here
is an extension of the nose landing gear model presented in Thota et al.14 Specifically, we add the extra
degree of freedom corresponding to the longitudinal motion as described by β to investigate its influence on
the overall dynamics.

The longitudinal mode is coupled to the torsional and lateral modes via the tyre-ground interface, but
also induces several geometrical effects into the gear dynamics. Namely, the angle β contributes to the overall
rake angle, so that we are dealing with an effective rake angle of (φ+β). The effective rake angle in turn has
several geometric consequences. First of all, the effective caster length eeff, which has significant influence
on the stability of the gear,14, 18 now takes the form

eeff = e cos (φ+ β) +R tan (φ+ β) + e sin (φ+ β) tan (φ+ β) . (1)

Hence, any longitudinal bending motion induces a time-varying effective caster length eeff, while eeff is
constant when the longitudinal bending mode is not taken into account (that is, β ≡ 0).

Apart from influencing the effective caster length, there are other geometrical effects of a nonzero effective
rake angle. Specifically, the swivel angle θ, which is the angle between the wheel center plane and the x−axis,
is related to the torsion angle ψ by

θ = ψ cos (φ+ β) . (2)

Furthermore, for a nonzero torsion angle ψ, a tilt γ in the wheel center plane is created; it is given by

γ = ψ sin (φ+ β) . (3)

Finally, a nonzero effective rake angle changes the moment that destabilizes the static orientation of the
gear.14

Equations (1)–(3) contribute to the coupling of the longitudinal mode (that is, β) to the other two modes,
described by ψ and δ. This type of pure geometrical coupling is an addition to the dynamic coupling between
the modes via the forces generated at the tyre-ground contact of the elastic tyre. We use a modified version of
the well-established stretched string tyre model developed by von Schlippe and Dietrich.9 Our modification
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Table 1. System parameters and their values as used in the modeling.

symbol parameter value

structure parameters

lg gear height 2.5 m

e caster length 0.16 m

φ rake angle 14.7 deg (0.2571 rad)

kψ torsional stiffness of strut 3.0 x 105 N mrad−1

kδ lateral bending stiffness of strut 3.24 x 106 N mrad−1

kβ longitudinal bending stiffness of strut 3.0 x 107 N mrad−1

cψ torsional damping of strut 110.0 N m s rad−1

cδ lateral bending damping of strut 1.0 N m s rad−1

cβ longitudinal bending damping of strut 10.0 N m s rad−1

Iz moment of inertia of strut w.r.t z-axis 100.0 kgm2

Iy moment of inertia of strut w.r.t y-axis 300.0 kgm2

Ix moment of inertia of strut w.r.t x-axis 600.0 kgm2

tyre parameters

R radius of nose wheel 0.362 m

h contact patch length 0.1 m

kα self-aligning coefficient of elastic tyre 1.0 m/rad

kλ restoring coefficient of elastic tyre 0.01 rad−1

cλ damping coefficient of elastic tyre 570.0 N m2rad−1

L relaxation length 0.3 m

αm self-aligning moment limit 10.0 deg (0.1745 rad)

continuation parameters

Fz vertical force on the gear 40.0-200.0 kN

V forward velocity 0.0-110.0 m s−1

includes the effect of the lateral deformation caused by the lateral bending mode δ. Since the tilt γ is known
to influence tyre dynamics in cars more than in aircraft,14 we do not model its effect here.

Overall, the equations of motion for the nose landing gear model can be written as

Iz ψ̈ +MKψ +MDψ +MF1
+MDα − Fz sin (φ+ β) eeff sin(θ) = 0, (4)

Ix δ̈ +MKδ +MDδ +Mλδ − Fz eeff sin(θ) = 0, (5)

Iy β̈ +MKβ +MDβ +Mλβ − Fz lg sin(φ+ β) = 0, (6)

λ̇+
V

L
λ− V sin (θ) − lg δ̇ cos(δ) − (eeff − h) cos (θ) ψ̇ cos (φ+ β) = 0. (7)

Equations (4)–(7) are a seven-dimensional model for the dynamics of the nose landing gear. Here Eq. (4),
Eq. (5) and Eq. (6) model the torsional, lateral and longitudinal degrees of freedom, with moments of inertia
Iz , Ix and Iy , respectively. Equation (7) comes from von Schlippe’s stretched string model,9 which describes
the nonlinear kinematic relationship between the torsion angle ψ, lateral bending angle δ and the lateral
deformation λ of the leading edge of the contact patch of the tyre. Note that the torsional mode and the
lateral bending mode appear as part of a five-dimensional model,14 but Eq. (6) and the respective coupling
terms are new. To keep this paper self-contained we now present a more detailed description of the individual
terms of Eqs. (4)–(7).

The second and third terms in Eq. (4) describe the stiffness and damping of the torsional mode as
MKψ = kψψ and MDψ = cψψ. The second and third terms in Equations (5)–(6) describe the stiffness and
damping of the lateral and longitudinal modes in exactly the same way; see Table 1 for the values of the
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stiffnesses k∗ and dampings c∗ of the three modes as used in our calculations. The equations also contain
coupling moments generated due to the interaction of the elastic tyre with the ground. Specifically, the tyre
force FKλ , which is a result of the tyre deformation λ, tries to restore the motions to their equilibrium states
and simultaneously acts as a coupling factor for the three modes.

II.A. Coupling of the torsional mode

In Eq. (4), the combined moment MF1
due to the tyre’s restoring force FKλ and self-aligning moment MKα

is given by
MF1

= MKα + eeff FKλ . (8)

Here MKα is given by the piecewise continuous function10, 14

MKα =

{

kα
αm
π

sin
(

α π
αm

)

Fz if |α| ≤ αm,

0 if |α| > αm,
(9)

and the lateral restoring force FKλ due to tyre deformation is given by

FKλ = kλ tan−1 (7.0 tan (α)) cos
(

0.95 tan−1 (7.0 tan (α))
)

Fz. (10)

The constants kα and kλ represent the torsional and lateral stiffness coefficients of the tyre. The slip angle
α is related to the lateral deformation λ by α = tan−1 (λ/L), where L is the relaxation length of the tyre.
In this work we consider a piecewise smooth approximation to the self-aligning moment MKα ; the constant
αm in Eq. (9) sets a limit on the slip angle α beyond which MKα is taken to be zero.

Finally, in Eq. (4) the moment MDα due to the tyre’s tread damping is given by

MDα = cλ cos (φ+ β)
ψ̇

V
. (11)

It is clear from the above equations, describing the influence of the tyre-ground contact, that the longitudinal
mode variable β enters into the torsional mode via the effective caster length eeff, and also via the last term
in Eq. (4) representing a destabilizing moment.

II.B. Coupling of lateral and longitudinal modes

In Eq. (5) the moment Mλδ couples the torsional, lateral and longitudinal motions; it is given by

Mλδ = lg FKλ cos(θ) cos(φ+ β), (12)

where lg is the distance between the point of attachment of the gear to the fuselage and the ground. The last
term in Eq. (5) represents a destabilizing moment that is proportional to the vertical load on the aircraft.
This moment becomes active in a significant way during landing of an aircraft, when there is a sudden
increase in the vertical load.

Similarly, in Eq. (6) the coupling moment Mλβ is given by

Mλβ = lg FKλ sin(θ) cos (φ+ β) . (13)

Again, the last term in Eq. (6) represents a destabilizing moment proportional to the vertical force Fz as
well as to the sine of the effective rake angle. For a nonzero rake angle φ of the landing gear this moment is
responsible for a nonzero stable equilibrium position. This is different from the case when the longitudinal
degree of freedom β is not considered in the model, so that the equilibrium position is at zero.14

II.C. Tyre kinematics

Equation (7) describes the motion of the tyre under the influence of the strut’s torsional, lateral and longi-
tudinal motions. Here, the resultant tyre deformation is an algebraic sum of the deformation caused by the
torsional and lateral modes. We incorporate into Eq. (7) the effect of the lateral deformation caused due to
the lateral bending mode14 by adding an extra term to the conventional equation representing the stretched
string model.9 The superimposing of the effects of both the modes is justified by derivations that are not
presented here. The longitudinal mode variable β enters into the tyre motion via the effective caster length
eeff and the effective rake angle.
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III. Nonlinear dynamics of the nose landing gear

We now consider the nonlinear dynamics of mathematical model (4)–(7) of the nose landing gear. To
this end we set the parameters as summarized in Table 1, which are realistic choices for a generic midsized
passenger aircraft. First, we present a time and frequency domain analysis of the model with Matlab for
three different settings of the forward velocity V and the downward force Fz , which correspond to three
different kinds of shimmy oscillations. This allows us to investigate the relative contributions of the three
vibrational modes to the overall landing gear dynamics. Next, we present a one-parameter bifurcation study
in the forward velocity V to determine the relative strengths of the three modes over a larger range of
operating conditions. Finally, we present a direct comparison of two-parameter bifurcation diagrams in the
(V, Fz)-plane of Eqs. (4)–(7), with and without an active longitudinal bending mode. The bifurcation studies
were performed with the numerical continuation package AUTO,16 which allows one to follow equilibria and
periodic solutions, and their bifurcations in system parameters.

III.A. Time and frequency domain analysis

For the parameter values in Table 1 the linear damped natural frequencies of the torsional, lateral and
longitudinal modes in the case of an unloaded gear are 8.71 Hz, 11.69 Hz and 50.32 Hz, respectively. These
frequencies of the uncoupled linear modes are in realistic ranges for a midsize passenger aircraft. Due to
the nonlinearities of the model, the frequencies of the three modes during shimmy oscillations will deviate
somewhat from their natural frequencies, but they remain clearly distinguishable.

The lateral and longitudinal bending modes manifest themselves at the tyre-ground interface as motions
that deform the tyre. Therefore, it is convenient to consider not the angular variables δ and β themselves,
but their strokes at ground level as given by

δ∗ = lg sin(δ) and β∗ = lg sin(β), (14)

where lg is the height of the gear. The strokes δ∗ and β∗ allow for a direct comparison of the amplitudes
of the lateral and longitudinal motions relative to the tyre deformation λ (measured in meters). Since all
modes interact via the tyre, the respective frequency components in the power spectrum of λ reveal the
contributions of the three modes to the dynamics. To assess the role of the longitudinal bending oscillations
we consider the power spectrum of β∗ as well.

Figure 2 shows time histories and frequency spectra for three different sets of values of the velocity V
and the vertical force Fz . Each group of panels (a) to (c) illustrates the relative contributions of the different
modes to different kinds of shimmy oscillations. Three time series panels (left column) show oscillations of
the torsion angle ψ, of the tyre deformation λ in comparison with the lateral stroke δ∗, and of the longitudinal
stroke β∗, respectively. Notice the difference in scale, which shows that the longitudinal stroke β∗ oscillates
with negligible amplitudes, while the lateral stroke δ∗ oscillates with amplitudes of several centimeters.
The two spectra panels (right column) show the frequency content of the tyre deformation λ, and of the
longitudinal stroke β∗.

Figure 2(a1)–(a5) shows shimmy oscillations for V = 20 m/s and Fz = 60 kN, a relatively low velocity
and low vertical force. This type of shimmy dynamics can be identified as pure torsional shimmy: ψ oscillates
with a considerable amplitude of about 7 degrees, and this induces oscillations of the tyre deformation λ
[Fig. 2(a1) and (a2)] at the frequency ft ≈ 8.79 Hz of the torsional mode [Fig. 2(a4)]. The lateral mode is
effectively following this excitation with very small amplitude. However, the longitudinal mode is oscillating
at the frequency fβ ≈ 49.8 Hz and with negligible amplitudes. Even though the stiffness in the longitudinal
mode is slightly higher than in the lateral and torsional mode, the restoring effect of the coupling term Mλβ

extracts most of the energy out of the longitudinal mode.
For the higher-vertical force case of V = 5 m/s and Fz = 162 kN in Fig. 2(b1)–(b5), we find a very

different type of shimmy oscillations: pure lateral shimmy driving the torsional mode. Here, the lateral
mode drives the tyre deformation at a comparable amplitude of about 5 cm [Fig. 2(b2) and (b4)] and at a
frequency fl ≈ 11.72 Hz. In contrast to the earlier case, the torsional mode follows this excitation by the
lateral mode. Again, the longitudinal mode is oscillating with an extremely low amplitude about a nonzero
equilibrium and with frequency fβ ≈ 49.8 Hz.

A qualitatively different type of shimmy dynamics can be seen in Fig. 2(c1)–(c5) for V = 12 m/s and Fz =
162 kN, where we see an interaction between the torsional mode and the lateral bending mode. In Fig. 2(c1)
and (c2), the modulation in the amplitudes of the torsional and lateral bending modes indicates an interplay
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Figure 2. Time histories (left column) and frequency spectra (right column) for V = 20 m/s and Fz = 60 kN (a), for
V = 5 m/s and Fz = 162 kN (b), and for V = 12 m/s and Fz = 162 kN (c). The individual panels for each case (a) to (c)
show time series of the torsional mode variable ψ, of the lateral stroke δ∗ (black) and the tyre deformation λ (grey),
and of the longitudinal stroke β∗, as well as spectra of the tyre deformation λ and of the longitudinal stroke β∗; ft, fl
and fβ indicate the frequencies of the torsional, lateral and longitudinal modes.

of two incommensurate frequencies. The frequency spectrum given in Fig. 2(c4) clearly shows that these
two frequencies correspond to the torsional (ft) and lateral bending (fl) modes. The time histories shown
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Figure 3. One-parameter continuation in V for Fz = 60.0 kN (a) and Fz = 162.0 kN (b); the individual panels show from
top to bottom the maximum of the torsion angle ψ, the maximum of the lateral bending stroke δ∗, and the maximum of
the longitudinal bending stroke β∗; stable parts of branches are drawn as solid curves, while unstable parts are dashed,
with Hopf bifurcations labeled H and torus bifurcations labeled T.

in these panels correspond to a transient quasiperiodic behaviour in the vicinity of a torus bifurcation.11, 12

Depending on the distance from the torus bifurcation, the transient behaviour may last anywhere between
a few tens of seconds to hundreds of seconds. In a situation such as take-off or landing, where the velocities
change quite rapidly, such transient behaviour plays an important role in the observed dynamics.

An important conclusion from Fig. 2 is that the longitudinal mode does not appear to contribute to the
landing gear dynamics. Even though we considered three qualitatively different types of shimmy oscillations,
the longitudinal mode is excited only very weakly, oscillates with a negligible amplitude, and does not
influence either the torsional or the lateral mode.

III.B. Shimmy oscillations as a function of forward velocity V

We now investigate the role of the longitudinal bending mode for the nose gear dynamics as described by
Eqs. (4)–(7) over the range of 0–110 m/s of the forward velocity V for two fixed values of the downward
force. Specifically, we perform a numerical continuation study of the equilibrium and bifurcating shimmy
oscillations and their stability for the light and the heavy cases Fz = 60 kN and Fz = 162 kN. Note that this
choice of Fz means that the examples of shimmy oscillations shown in Fig. 2 are covered by the one-parameter
bifurcation diagrams presented here.

Figure 3 shows the resulting branches of solutions of two continuation runs in V for Fz = 60 kN and
Fz = 162 kN. For each case, three panels show the maximum amplitude of the torsion angle ψ, of the
lateral stroke δ∗, and of the longitudinal stroke β∗, respectively. Notice again the difference in scale between
δ∗ and β∗. The equilibrium solution of the gear, which corresponds to the desired straight-line motion, is
represented by the straight line with zero amplitude in the panels. In both cases we find a single branch
of shimmy oscillations with nonzero amplitudes of the modes. The equilibrium and the shimmy oscillations
may be stable (solid curves) or unstable (dashed curves). Note that the straight-line motion may be stable
for low and high velocities V for a given range of downward force Fz . Stability changes at bifurcation points,
such as the Hopf bifurcation at which the shimmy oscillations are born. We also find changes of stability at
torus bifurcations of shimmy oscillations; this means that a second frequency becomes involved in the gear
motion.

Figure 3(a) shows a low loading case for Fz = 60 kN. Here, even though the straight-line equilibrium is
unstable for very low velocities, it becomes stable in a Hopf bifurcation corresponding to the lateral mode
and remains stable for the velocity range 2–9 m/s. As the velocity increases further, the stability of the stable
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Figure 4. Two-parameter bifurcation diagram in the (V, Fz)-plane of Eqs. (4)–(7) consisting of curves of Hopf bifurca-
tions, saddle-node of limit cycle bifurcations and torus bifurcations. In the left panel the longitudinal bending mode
is active, and the right panel is for β ≡ 0, that is, for the model without longitudinal bending. The Hopf bifurcation
curve Ht of the torsional mode forms an isola and changes criticality at two degenerate Hopf points DH (the dashed
part is subcritical); it interacts with the Hopf bifurcation curve Hl of the lateral mode in two double Hopf points HH.
In both panels, the shading represents the parameter region where the straight-line equilibrium is stable. The points
(a), (b) and (c) in the left panel indicate the parameter values used in Fig. 2.

equilibrium is lost in a Hopf bifurcation H at V ≈ 9.8 m/s. This Hopf bifurcation is supercritical, and it gives
rise to stable periodic shimmy oscillations. The relative maximal amplitudes show that this type of shimmy
oscillations is dominated by the torsional mode. Its maximal amplitude initially grows with V but decreases
again above V ≈ 20 m/s [Fig. 3(a1)]. The lateral frequency effectively remains dormant [Fig. 3(a2)] and the
longitudinal motion is relatively small [Fig. 3(a3)], which indeed agrees with the dynamics in Fig. 2(a1)-(a5).
The branch of stable torsional shimmy oscillations reduces to zero amplitude at V ≈ 55.8 m/s in a third
Hopf bifurcation H. Beyond this bifurcation point the straight-line equilibrium is stable and we do not see
shimmy oscillations.

Figure 3(b) shows some marked differences for the higher loading case of Fz = 162 kN. Again, the
straight-line equilibrium, which is already unstable, undergoes a stability change via a supercritical Hopf
bifurcation H, now at V ≈ 9.2 m/s. However, now the unstable shimmy oscillation that is born at the Hopf
bifurcation quickly changes stability in a torus bifurcation T, which results in stable shimmy oscillations
dominated by the torsional mode. The maximal amplitudes of the shimmy oscillations initially grow with V
but then decrease again. Notice that the maximum amplitude of the torsional mode is now about 10 degrees.
It is reached around V ≈ 16 m/s, after which it decreases substantially [Fig. 3(b1)]; this is mirrored on a
much smaller scale by the longitudinal mode [Fig. 3(b3)]. The maximum amplitude of the lateral mode of
about 10 cm is also attained at V ≈ 16 m/s [Fig. 3(b2)]. The branch of stable shimmy oscillations disappears
at V ≈ 88.2 m/s in a second Hopf bifurcation H. We remark that in the unstable region before the torus
bifurcation the system jumps to stable pure lateral shimmy oscillations as shown in Fig. 2(b1)-(b5).

One of the main features of the one-parameter bifurcation diagrams in Fig. 3 is the negligible size of the
longitudinal oscillations. Throughout the entire V -range, and for both loading cases, the longitudinal stroke
β∗ is at least two orders of magnitude smaller than the lateral stroke, never exceeding 0.1 mm. This forms
evidence that the longitudinal motion β is insignificant for the landing gear dynamics for a free rolling nose
landing gear.

III.C. Bifurcation diagram in the (V, Fz)-plane

We now consider the role of the longitudinal mode for the dynamics of the nose landing gear over the
entire relevant range of the two main operational parameters V and Fz. To this end, we show in Fig. 4
the two-parameter bifurcation diagram in the (V, Fz)-plane of the seven-dimensional Eqs. (4)–(7) and of the
five-dimensional model where β ≡ 0, both computed with the package AUTO for the parameter values in
Table 1.

Figure 4(left) is the two-parameter bifurcation diagram for the seven-dimensional model (4)–(7), which
includes the longitudinal degree of freedom β. It provides a global summary of the dynamics of this model
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by presenting the locations of the main bifurcations. Specifically, we show the locations of Hopf bifurcations,
saddle-node bifurcations and torus bifurcations. Along the curve Ht one finds Hopf bifurcations of the
torsional mode, meaning that the bifurcating shimmy oscillations are dominated by the torsional component.
The curve Ht forms an isola (closed curve); the solid part of the curve Ht corresponds to supercritical Hopf
bifurcations, in which stable shimmy oscillations are born if the equilibrium before the bifurcation is stable,
while the dashed part of Ht corresponds to subcritical Hopf bifurcations where unstable shimmy oscillations
bifurcate. The transition between the super- and subcritical parts of Ht occurs at two special points DH
that are known as degenerate Hopf points.11, 12 Each of these DH points is the starting point of a curve SN
of saddle-node bifurcations. There is also a curve Hl of Hopf bifurcations of the lateral bending mode. It
intersects the torsional Hopf curve Ht in two points HH that are known as double-Hopf points. As predicted
by bifurcation theory,11, 12 we find that locally two curves of torus bifurcations emanate from each of the HH
points. There are two main torus curves in Fig. 4(left): along Tt one finds torus bifurcations of the torsional
shimmy oscillations born at Ht, and along Tl one finds torus bifurcations of the lateral shimmy oscillations
born at Hl. Note that the curves Tl and Tt both connect the two codimension-two HH points.

Overall, the bifurcation curves in Fig. 4(left) organize the (V, Fz)-plane into regions with different types of
dynamics. Specifically, the shaded region represents parameter values for which the straight-line equilibrium
is stable, that is, there are no shimmy oscillations. Different regions bounded by the bifurcation curves
correspond to different types of dynamics. Specifically, the three different types (a)-(c) of shimmy oscillations
from Fig. 2 can be identified in Fig. 4(left). In the region including the point (a), the torsional mode is
dominant; in the region including the point (b), shimmy oscillations are dominated by the lateral mode, and
in the region including the point (c), one may observe coupling between the torsional and lateral modes.
Note further that the one-parameter bifurcation diagrams in Figure 3(a) and (b) correspond to horizontal
cross sections of Fig. 4(left) at Fz = 60 kN and Fz = 162 kN, respectively. The different bifurcations that
are encountered as the forward velocity V is changed are readily identified.

Figure 4(right) shows the two-parameter bifurcation diagram for the five-dimensional model without
inclusion of the longitudinal degree of freedom β. The agreement with the bifurcation diagram in Fig. 4(left)
is immediate. The corresponding bifurcation curves differ by less than 1% across the entire (V, Fz)-plane.
The only minor difference between the left and the right panels is the fact that the isola of Ht encloses a
slightly smaller area of the (V, Fz)-plane in Fig. 4(left). This is due to the increase in the effective rake angle
(φ + β) in the presence of the longitudinal mode β. Overall, the excellent agreement of the two bifurcation
diagrams constitutes conclusive evidence over the entire range of the operating parameters V and Fz that
the longitudinal motion β does indeed not influence the landing gear dynamics in any significant way.

IV. Effects of torsional damping

We now perform a study of how the torsional damping cψ influences the bifurcation diagram in the
(V, Fz)-plane. Here, we make use of the fact that the longitudinal mode β does not play a significant role
in the dynamics of the landing gear, so that it suffices to consider the five-dimensional model where β ≡ 0.
The damping cψ models the overall damping characteristics in the torsional mode of nose landing gear.
Specifically, it includes the damping associated with an extra torsional or shimmy damper that is often
installed on landing gears to curtail torsional oscillations. The disadvantage of shimmy dampers is that they
increase the mass of the landing gear, contributing to the overall weight of the aircraft. Hence, a study of
the effects of torsional damping on shimmy oscillations is important for evaluation and design of a landing
gear.

Figure 5 shows two-parameter bifurcation diagrams for the torsional damping values cψ = 150 N m s
rad−1 in panel (a) and cψ = 70 N m s rad−1 in panel (b), where all other parameters are as shown in Table 1.
The two panels of Fig. 5 correspond to larger and smaller values of cψ than that of 110 N m s rad−1 given
in Table 1 and used in Fig. 4. It is quite evident from Figs. 5(a),(b) and Fig. 4(right) that, as torsional
damping decreases, the torsional shimmy region enclosed by the curve Ht becomes significantly larger. In
contrast, decreasing cψ reduces the region corresponding to lateral shimmy, but this is a small effect. This
reduction is due to the transfer of energy from the lateral bending mode into the torsional mode.

We now investigate how the region (the isola) corresponding to torsional oscillations varies over a wider
range of cψ values. To this end we show in Fig. 6 the minimum and maximum of the velocity along Ht as a
function of cψ. The corresponding values Hmin

t and Hmax
t were computed for the seven different values of cψ

that are marked as dots in Fig. 6. This data was then used to obtain the solid curves by spline interpolation.
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Figure 6. The left-most point Hmin

t and the right-most point Hmax

t of the Hopf bifurcation curve Ht as a function of
cψ. The shaded region corresponds to the area in the two-parameter bifurcation diagrams where torsional oscillations
can occur.

Torsional shimmy oscillations can occur in the shaded region bounded by the two interpolated curves. We
observe that while a change in cψ has very little effect on Hmin

t , it has a large effect on Hmax
t . Specifically,

for cψ = 200 N m s rad−1, torsional oscillations can occur only between V ≈ 11 m/s and V ≈ 50 m/s. At a
lower value of cψ, say cψ = 100 N m s rad−1, on the other hand, torsional oscillations are born above V ≈ 7
m/s and may be sustained for velocities greater than the average take-off velocity of a midsize passenger
aircraft. As an extreme case we also calculate Hmin

t and Hmax
t for cψ = 10 N m s rad−1, where Hmax

t is at
V ≈ 1207 m/s, which falls well outside the range of Fig. 6. A study in Thota et al.14 found that Hmin

t and
Hmax
t depend linearly on the rake angle φ. Such studies expand the existing knowledge of the parameter

dependence of shimmy oscillations. In particular, they provide crucial sensitivity information that can assist
in choosing optimal damping parameters over an entire operational range.

V. Conclusions

This work focused on the interaction of different vibrational modes in shimmy oscillations of the nose
landing gear of a generic midsized passenger aircraft. Specifically, we developed a seven-dimensional model
that includes torsional, lateral and longitudinal degrees of freedom. Time histories and frequency spectra, in
conjunction with a numerical bifurcation analysis in the forward velocity and the vertical force on the gear,
showed that the torsional and the lateral bending modes interact very strongly to give rise to different types
of shimmy oscillations. By contrast, the longitudinal degree of freedom does not actively participate in any
of the different possible types of shimmy oscillations.
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The overall conclusion is that the longitudinal degree of freedom can safely be omitted in the analysis
of nose landing gear shimmy. Hence, without a sacrifice in qualitative and quantitative accuracy, it is
sufficient to work with a five-dimensional model. This reduction in dimensionality and complexity of the
model is of practical interest because it allows for more extensive bifurcation studies of the landing gear
system. In this way, even quite complicated dynamical scenarios can be investigated. As an example, we
presented the investigation of the dependence of shimmy oscillations on torsional damping cψ. The analysis
concluded that the choice of appropriate overall torsional damping is crucial in minimizing the velocity range
in which torsional shimmy occurs. In the longer term, dynamical scenarios, including acceleration during
take-off and braking after landing, could be considered. In this case, forward velocity and vertical force
are not independent of each other and their relationship can be derived from flight test data. Furthermore,
the study of a braking aircraft may require the inclusion of a vertical degree of freedom due to possible
excitement of oleo (shock damper) dynamics.
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