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Geometric Nonlinearities of Aircraft Systems
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Summary. Nonlinearities due to geometric effects, in particular, via angular vari-
ables that are not small, are important for aircraft operation. Geometric nonlinear-
ities have a strong effect on the dynamics of the aircraft system under consideration,
and they are especially pronounced in aircraft ground operations. As a concrete ex-
ample we consider here the effect of a non-zero rake angle on the dynamics of a nose
landing gear. More specifically, we use tools from bifurcation theory to investigate
the stability of the straight-rolling motion during a take-off run.

1 Introduction

Many systems of an aircraft operate in such a way that nonlinearities need to
be taken into account to describe their dynamics correctly. Sources of nonlin-
earities include nonlinear properties of individual components (for example,
tyres and dampers), range limits of control surfaces and, in particular, geo-
metric nonlinearities due to the fact that angular variables are not small. As
a specific example, we consider the role that geometric nonlinearities play
in the phenomenon of shimmy oscillations in aircraft landing gears during
high-speed straight-line rolling. Due to their implications for passenger com-
fort, safety and maintainance costs, shimmy oscillations are an unwanted type
of dynamics. They may occur in any wheeled vehicle, including cars, pulled
trailers, motorcycles and indeed aircraft; see the overview papers [1, 4, 5].

We consider here shimmy oscillations of the nose landing gear of a mid-
size passenger aircraft, as sketched in Figure 1. A nose landing gear consists
of a strut, attached to the aircraft body, to which a wheel is mounted with
an offset from the strut axis, called the caster length. The system’s dynamics
are dominated by the interplay between the two basic modes [7]: the torsional
mode of rotation around the strut axis, and the lateral mode of deflection
of the entire gear from side to side. These two modes are coupled via the
nonlinear interaction of the elastic tyre with the ground. The overall landing
gear system is characterised by geometric nonlinearities, because the torsional
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Fig. 1: A non-zero rake angle (of the strut with the vertical) of an aircraft nose
landing gear results in a tilt of the tyre plane; the two main modes are the torsional
mode of rotation around the steering axis, and the lateral mode of sideways motion
of the gear around its attachement point

and the lateral mode may show dynamics of considerable amplitude during
shimmy oscillations. An important feature of an aircraft nose landing gear is
the presence of a non-zero rake angle of the steering axis with the vertical,
typically in the range of 0 to 10 degrees. A positive rake angle introduces
additional geometric nonlinearities into the problem. First of all, it contributes
to an overall effective caster length, which in turn enters the coupling between
the two modes. Furthermore, steering results in a tilt of the wheel, meaning
that the wheel plane is not perpendicular to the ground; see the front view in
Figure 1.

We model the nose landing gear by equations for the torsional mode ψ, the
lateral mode δ and the lateral deformation λ of the tyre (for which we use the
well-established stretched string model [8]). Overall we obtain a mathemat-
ical model in the form of five coupled nonlinear ordinary first-order differential
equations. The model depends on a number of parameters, including the di-
mensions of the landing gear, stiffnesses and dampings of the two modes and
parameters specifying the tyre forces. The values of these parameters were
chosen to represent a midsize passenger aircraft (with a rake angle of 9 de-
grees); see [6] for details of the model and the specific values of the modelling
parameters.

2 Bifurcation Analysis of Shimmy Oscillations

The landing gear moves at horizontal velocity V , subject to a vertical force Fz

that is exerted by the aircraft body (which is modelled as a block of mass). It is
therefore natural to study the dynamics of the nose landing gear in dependence
on the operational parameters V and Fz. Figure 2 shows how the operational
range of the (V, Fz)-plane is divided into regions of qualitatively different
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Fig. 2: Two-parameter bifurcation diagram in the (V, Fz)-plane, consisting of curves
Ht and Hl of Hopf bifurcations (grey) and curves Tt and Tl of torus bifurcation
(black). The straight-rolling solution is stable in the white region; torsional and
lateral shimmy oscillations occur in the regions of right-slanted and left-slanted
shading, respectively. The two thick black curves are two simulated take-off runs, of
a light and a heavy aircraft, respectively.

dynamics. The boundaries between regions are given by curves of bifurcations,
which have been computed with the continuation software AUTO [2].

In the white region in Figure 2 the straight-rolling motion is stable, that is,
the nose landing gear does not show shimmy oscillations. Stability is lost when
one of two Hopf bifurcation curves, Ht or Hl, is crossed. Specifically, crossing
Ht corresponds to an undamping of the torsional mode. The ensuing torsional
shimmy oscillations are stable in the region of right-slanted shading and they
are characterised by oscillations of the landing gear around the strut axis.
By contrast, crossing Hl corresponds to an undamping of the lateral mode,
meaning that the gear shows lateral shimmy oscillations in the plane perpen-
dicular to the direction of travel. This type of shimmy is stable in the region
of left-slanted shading. The curves Ht and Hl intersect at a double-Hopf point
HH, which gives rise to two curves, Tt and Tl, of torus (or Neimark-Sacker)
bifurcations [3]. Crossing these two curves corresponds to the undamping of
the second mode, which gives rise to the creation of an invariant torus. We
find that the bifurcating torus is unstable throughout. As a result the curves
Tt and Tl bound a large region where torsional and lateral shimmy oscilla-
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Fig. 3: One-parameter continuations along the two simulated take-off runs of a light
(left column) and a heavy (right column) aircraft. The top panels show the maximum
of the torsion angle ψ and the bottom panels the maximum of the lateral bending
stroke δ∗; stable parts of branches are black and unstable parts grey.

tions are both stable. In this region of bistability, it depends on the initial
condition which type of shimmy the landing gear performs.

3 Shimmy dynamics during take-off

Figure 2 gives a comprehensive picture of the behaviour of the aircraft over
the relevant ranges of forward velocity V and downward force Fz. Each point
in the (V, Fz)-plane corresponds to a type of dynamics and it typically lies
in one of the regions that were identified. Hence, the bifurcation diagram in
Figure 2 illustrates the robustness of a typical choice of V and Fz with respect
to small changes of their values. On the other hand, larger changes that result
in a crossing of bifurcation curves lead to qualitative changes of the behaviour
of the system.

To demonstrate how the information in Figure 2 can be used in practice we
consider the dynamics of the nose landing gear during take-off. During a take-
off run the aircraft accelerates from zero velocity to its take-off speed, during
which the vertical force Fz on the nose landing gear decreases from its maximal
(static) value to zero. Hence, a take-off run corresponds to a one-dimensional
curve in the (V, Fz)-plane. Two examples of take-off runs (chosen to feature
shimmy oscillations), one for a light and one for a heavy aircraft, are shown
as bold black curves in Figure 2. Owing to the quadratic dependence of lift
on velocity, they have been modelled as parabolas. One immediately notices
that the two take-off runs are qualitatively different, because they intersect
different regions of the (V, Fz)-plane. Notice further that the exact shape of
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these curves is not crucial, as long as the same regions are encountered in the
same order.

Figure 3 shows the results of two one-parameter continuations with AUTO
along the two take-off runs. Shown are the amplitudes of the torsion angle
ψ and of the lateral bending stroke δ∗ (the lateral stroke of the strut at
ground level). The take-off run for the light aircraft case, shown in the left
column of Figure 3, starts at Fz = 150 kN and ends at a take-off speed of
70 m/s. The straight-rolling motion is stable, but then loses stability when
the curve Ht is crossed in Figure 2. The amplitude of the ensuing torsional
shimmy oscillations increases rapidly up to a maximum of about 14 degrees.
It then decreases as the aircraft accellerates. Finally, at about 45 m/s the
straight-rolling motion regains stability and the torsional shimmy oscillations
disappear. Notice that the lateral bending stroke δ∗ shows small amplitude
oscillations during torsional shimmy; namely, it follows the torsional mode
passively due to the coupling via the tyre [6].

The take-off run for the heavy aircraft case is shown in the right column
of Figure 3; it starts as a vertical force of Fz = 450 kN and ends at a take-off
speed of 80 m/s. This take-off run is such that the straight-rolling motion
is unstable from the very beginning. Instead at low speeds the nose landing
gear performs lateral shimmy oscillations with a lateral stroke amplitude of
around 5 cm; again due to the coupling via the tyre, the torsional mode
follows this motion with small amplitude. The lateral shimmy oscillations are
stable until the curves Tl is encountered in Figure 2 at a velocity of about 50
m/s. This curve marks the boundary of the bistable region and the system
switches to the branch of torsional shimmy oscillations, as is indicated by the
arrows in Figure 3 (right column). The torsional shimmy oscillations gradually
decrease and finally disappear at around 70 m/s just prior to take-off. We
remark that during the switching from lateral to torsional shimmy oscillations
one may encounter quasiperiodic (two-frequency) shimmy oscillations as long
transients; see [6] for more details.

4 Conclusions

We presented a study of aircraft nose gear shimmy as an example of how geo-
metric nonlinearities influence the dynamics of aircraft systems. Specifically,
we performed a bifurcation analysis of a mathematical model that describes
the interaction of the torsional and lateral modes via the elastic tyre. Geo-
metric nonlinearities arise from the fact that the amplitudes of the torsion
angle and the bending stroke may be substantial — an effect that is further
enhanced by the geometric nature between the coupling of the two modes via
a non-zero rake angle. Torsional and lateral shimmy oscillations occur in large
regions in the plane of velocity versus vertical force, including in a region of
bistability. One-parameter continuations along take-off runs for a light and
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a heavy aircraft demonstrated how shimmy oscillations are encountered in
practice when the different regions are crossed.

An obvious question is how the bifurcation diagram presented here de-
pends on the parameters that specify the landing gear, especially on those
that have a bearing on geometric nonlinearities. The influence of the rake
angle has been considered in [6], where it was found that the region of tor-
sional shimmy oscillations shrinks with an increase of the rake angle. Our
present work focuses on the dependence of the bifurcation structure on other
parameters, those that determine the geometry of the nose landing gear as
well as those that specify tyre properties. The study of additional effects,
for example, dynamics of vertical shock absorbers in the presence of a rough
runway, can be addressed via an expansion of the model of the nose landing
gear. Furthermore, we also intend to model and study the dynamics of main
landing gears of different geometries (with different numbers of wheels). In
the longer term, our goal is to couple the dynamics of individual gears via a
flexible fuselage to obtain a realistic, yet tractable model to describe aircraft
ground dynamics.
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